Sufficient conditions for capillary surfaces to be energy minima

被引:26
作者
Vogel, TI [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
关键词
D O I
10.2140/pjm.2000.194.469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if a capillary surface satis es conditions relating to the eigenvalues of a certain differential operator, then the surface is a constrained strict local minimum for the relevant energy functional. The space of perturbations of the surface is rst defined in terms of graphs of functions in curvilinear coordinates and then related to perturbations of capillary surfaces which are uniformly small and have uniformly small derivatives.
引用
收藏
页码:469 / 489
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
[Anonymous], OPTIMAL CONTROL
[3]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[4]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[5]  
Finn R, 1997, PAC J MATH, V178, P197
[6]  
Finn R., 1986, EQUILIBRIUM CAPILLAR
[7]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[8]  
GROSSEBRAUCKMAN.K, 1996, PAC J MATH, V175, P526
[9]  
Helmberg G., 1969, INTRO SPECTRAL THEOR
[10]   STABILITY AND FOLDS [J].
MADDOCKS, JH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :301-328