Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy

被引:208
作者
Xu, X. D. [1 ]
Liu, P. [1 ]
Guo, S. [2 ]
Hirata, A. [1 ]
Fujita, T. [1 ]
Nieh, T. G. [3 ]
Liu, C. T. [2 ]
Chen, M. W. [1 ,4 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] City Univ Hong Kong, Ctr Adv Struct Mat, Kowloon, Hong Kong, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Phase separation; High-entropy alloy; Cs-corrected TEM; Atom probe tomography; Lattice distortion; MICROSTRUCTURE CHARACTERIZATION; SINGLE-PHASE; STABILITY; PLASTICITY; ELEMENTS;
D O I
10.1016/j.actamat.2014.10.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nano-scale phase separation is reported in a nominal single-phase, high-entropy alloy (HEA), which was characterized using scanning transmission electron microscopy (STEM) combined with atom probe tomography (APT). Despite the fact that X-ray diffraction exhibits a single face-centered-cubic (fcc) phase feature of the as-cast alloy prepared by melt spinning, selected area electron diffraction reveals weak L1(2) ordering in the as-spun alloy. High-resolution STEM shows the presence of two coherent nanophases with distinct L1(2) and fcc structures, coupling with compositional segregations. The ordering of the L1(2) domains is enhanced after annealing at 500 degrees C. Electron energy loss spectroscopy and APT analyses reveal that the L1(2) nano-phase is enriched with Fe, Co, Cr and Ni, while the fcc domains are a Cu-rich phase. The nano-scale phase separation can effectively minimize the lattice distortions caused by the atomic size difference in the constituent elements, which may offer structural insights into the unusual mechanical behavior and phase stability of fcc HEA. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 28 条
  • [1] Chen Y. S. Y., 2014, ENTROPY, V16, P870
  • [2] Egami T., 1984, J NON-CRYST SOLIDS, V64, P113
  • [3] Progress in High-Entropy Alloys
    Gao, Michael C.
    [J]. JOM, 2013, 65 (12) : 1749 - 1750
  • [4] Searching for Next Single-Phase High-Entropy Alloy Compositions
    Gao, Michael C.
    Alman, David E.
    [J]. ENTROPY, 2013, 15 (10) : 4504 - 4519
  • [5] ON THE ORIGIN OF PLANAR SLIP IN FCC ALLOYS
    GEROLD, V
    KARNTHALER, HP
    [J]. ACTA METALLURGICA, 1989, 37 (08): : 2177 - 2183
  • [6] Gerold V., 1989, ACTA METALL, V37, P2177
  • [7] Local Atomic Structure of a High-Entropy Alloy: An X-Ray and Neutron Scattering Study
    Guo, Wei
    Dmowski, Wojciech
    Noh, Ji-Yong
    Rack, Philip
    Liaw, Peter K.
    Egami, Takeshi
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (05): : 1994 - 1997
  • [8] Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
    He, J. Y.
    Liu, W. H.
    Wang, H.
    Wu, Y.
    Liu, X. J.
    Nieh, T. G.
    Lu, Z. P.
    [J]. ACTA MATERIALIA, 2014, 62 : 105 - 113
  • [9] Hirata A, 2011, NAT MATER, V10, P922, DOI [10.1038/NMAT3150, 10.1038/nmat3150]
  • [10] On the entropic stabilisation of an Al0.5CrFeCoNiCu high entropy alloy
    Jones, N. G.
    Aveson, J. W.
    Bhowmik, A.
    Conduit, B. D.
    Stone, H. J.
    [J]. INTERMETALLICS, 2014, 54 : 148 - 153