L2-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov-Poisson-Fokker-Planck System

被引:0
作者
Addala, Lanoir [1 ]
Dolbeault, Jean [2 ]
Li, Xingyu [2 ]
Tayeb, M. Lazhar [3 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Zarzouna 7021, Banzart, Tunisia
[2] Univ Paris 09, PSL Res Univ, CEREMADE, CNRS,UMR N 7534, Pl Lattre Tassigny, F-75775 Paris 16, France
[3] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, El Manar 2092, Tunisia
关键词
Confinement; Vlasov-Poisson-Fokker-Planck system; Convergence; Large-time behavior; Rate of convergence; Hypocoercivity; Diffusion limit; FAST DIFFUSION EQUATION; KINETIC-EQUATIONS; SOBOLEV INEQUALITIES; BEHAVIOR; LIMIT; EQUILIBRIUM; HYPOCOERCIVITY; CONVERGENCE; CONSTANTS; STATES;
D O I
10.1007/s10955-021-02784-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the linearized Vlasov-Poisson-Fokker-Planck system in presence of an external potential of confinement. We investigate the large time behaviour of the solutions using hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling. Our framework provides estimates which are uniform in the diffusion limit. As an application in a simple case, we study the one-dimensional case and prove the exponential convergence of the nonlinear Vlasov-Poisson-Fokker-Planck system without any small mass assumption.
引用
收藏
页数:34
相关论文
共 73 条
[31]   Generalized Logarithmic Hardy-Littlewood-Sobolev Inequality [J].
Dolbeault, Jean ;
Li, Xingyu .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (23) :17862-17874
[32]   φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations [J].
Dolbeault, Jean ;
Li, Xingyu .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13) :2637-2666
[33]   HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS [J].
Dolbeault, Jean ;
Mouhot, Clement ;
Schmeiser, Christian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) :3807-3828
[34]   Improved Poincare inequalities [J].
Dolbeault, Jean ;
Volzone, Bruno .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) :5985-6001
[35]   FAST DIFFUSION EQUATIONS: MATCHING LARGE TIME ASYMPTOTICS BY RELATIVE ENTROPY METHODS [J].
Dolbeault, Jean ;
Toscani, Giuseppe .
KINETIC AND RELATED MODELS, 2011, 4 (03) :701-716
[36]   Hypocoercivity for kinetic equations with linear relaxation terms [J].
Dolbeault, Jean ;
Mouhot, Clement ;
Schmeiser, Christian .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) :511-516
[37]   STEADY-STATES IN PLASMA PHYSICS - THE VLASOV-FOKKER-PLANCK EQUATION [J].
DRESSLER, K .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) :471-487
[38]   Spectral properties of hypoelliptic operators [J].
Eckmann, JP ;
Hairer, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) :233-253
[39]  
El Ghani N, 2010, COMMUN MATH SCI, V8, P463
[40]   ON THE EQUILIBRIUM STATES FOR ELECTRONIC DENSITIES IN PLASMA [J].
GOGNY, D ;
LIONS, PL .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (01) :137-153