L2-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov-Poisson-Fokker-Planck System

被引:0
作者
Addala, Lanoir [1 ]
Dolbeault, Jean [2 ]
Li, Xingyu [2 ]
Tayeb, M. Lazhar [3 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Zarzouna 7021, Banzart, Tunisia
[2] Univ Paris 09, PSL Res Univ, CEREMADE, CNRS,UMR N 7534, Pl Lattre Tassigny, F-75775 Paris 16, France
[3] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, El Manar 2092, Tunisia
关键词
Confinement; Vlasov-Poisson-Fokker-Planck system; Convergence; Large-time behavior; Rate of convergence; Hypocoercivity; Diffusion limit; FAST DIFFUSION EQUATION; KINETIC-EQUATIONS; SOBOLEV INEQUALITIES; BEHAVIOR; LIMIT; EQUILIBRIUM; HYPOCOERCIVITY; CONVERGENCE; CONSTANTS; STATES;
D O I
10.1007/s10955-021-02784-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the linearized Vlasov-Poisson-Fokker-Planck system in presence of an external potential of confinement. We investigate the large time behaviour of the solutions using hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling. Our framework provides estimates which are uniform in the diffusion limit. As an application in a simple case, we study the one-dimensional case and prove the exponential convergence of the nonlinear Vlasov-Poisson-Fokker-Planck system without any small mass assumption.
引用
收藏
页数:34
相关论文
共 73 条
[1]  
[Anonymous], 1964, THEOR PROBAB APPL+
[2]  
[Anonymous], 1995, Differential Integ. Equations
[3]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[4]  
Arnold A., RECENT ADV KINETIC E
[5]  
Arnold A., 2014, ARXIV14095425
[6]   A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case [J].
Bakry, Dominique ;
Barthe, Franck ;
Cattiaux, Patrick ;
Guillin, Arnaud .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :60-66
[7]  
Bedrossian J., 2017, ANN PDE, V3
[8]   A note on the long time behavior for the drift-diffusion-Poisson system [J].
Ben Abdallah, N ;
Méhats, F ;
Vauchelet, N .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) :683-688
[9]  
Ben Abdallah N, 2004, DISCRETE CONT DYN-B, V4, P1129
[10]   Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness) [J].
Ben Abdallah, N ;
Dolbeault, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 168 (04) :253-298