Multi-Scale Safety Helmet Detection Based on SAS-YOLOv3-Tiny

被引:48
作者
Cheng, Rao [1 ]
He, Xiaowei [1 ]
Zheng, Zhonglong [1 ]
Wang, Zhentao [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 08期
基金
中国国家自然科学基金;
关键词
YOLOv3-tiny; object detection; attention mechanism; deep learning; intelligent transportation;
D O I
10.3390/app11083652
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the practical application scenarios of safety helmet detection, the lightweight algorithm You Only Look Once (YOLO) v3-tiny is easy to be deployed in embedded devices because its number of parameters is small. However, its detection accuracy is relatively low, which is why it is not suitable for detecting multi-scale safety helmets. The safety helmet detection algorithm (named SAS-YOLOv3-tiny) is proposed in this paper to balance detection accuracy and model complexity. A light Sandglass-Residual (SR) module based on depthwise separable convolution and channel attention mechanism is constructed to replace the original convolution layer, and the convolution layer of stride two is used to replace the max-pooling layer for obtaining more informative features and promoting detection performance while reducing the number of parameters and computation. Instead of two-scale feature prediction, three-scale feature prediction is used here to improve the detection effect about small objects further. In addition, an improved spatial pyramid pooling (SPP) module is added to the feature extraction network to extract local and global features with rich semantic information. Complete-Intersection over Union (CIoU) loss is also introduced in this paper to improve the loss function for promoting positioning accuracy. The results on the self-built helmet dataset show that the improved algorithm is superior to the original algorithm. Compared with the original YOLOv3-tiny, the SAS-YOLOv3-tiny has significantly improved all metrics (including Precision (P), Recall (R), Mean Average Precision (mAP), F1) at the expense of only a minor speed while keeping fewer parameters and amounts of calculation. Meanwhile, the SAS-YOLOv3-tiny algorithm shows advantages in accuracy compared with lightweight object detection algorithms, and its speed is faster than the heavyweight model.
引用
收藏
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[2]  
[Anonymous], 2019, DISTANCE IOU LOSS FA
[3]  
Bochkovskiy A., 2020, ARXIV200410934
[4]  
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
[5]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[6]  
Feichtenhofer C, 2016, PROC CVPR IEEE
[7]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[8]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[9]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[10]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916