Fully Automatic 3D Bi-Atria Segmentation from Late Gadolinium-Enhanced MRIs Using Double Convolutional Neural Networks

被引:4
作者
Xiong, Zhaohan [1 ]
Nalar, Aaqel [1 ]
Jamart, Kevin [1 ]
Stiles, Martin K. [2 ]
Fedorov, Vadim V. [3 ]
Zhao, Jichao [1 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Auckland, New Zealand
[2] Univ Auckland, Fac Med & Hlth Sci, Waikato Clin Sch, Auckland, New Zealand
[3] Ohio State Univ, Wexner Med Ctr, Dept Physiol & Cell Biol, Columbus, OH 43210 USA
来源
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES | 2020年 / 12009卷
基金
美国国家卫生研究院;
关键词
Atrial segmentation; Convolutional neural network; MRI; ABLATION;
D O I
10.1007/978-3-030-39074-7_7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Segmentation of the 3D human atria from late gadolinium-enhanced (LGE)-MRIs is crucial for understanding and analyzing the underlying atrial structures that sustain atrial fibrillation (AF), the most common cardiac arrhythmia. However, due to the lack of a large labeled dataset, current automated methods have only been developed for left atrium (LA) segmentation. Since AF is sustained across both the LA and right atrium (RA), an automatic bi-atria segmentation method is of high interest. We have therefore created a 3D LGE-MRI database from AF patients with both LA and RA labels to train a double, sequentially used convolutional neural network (CNN) for automatic LA and RA epicardium and endocardium segmentation. To mitigate issues regarding the severe class imbalance and the complex geometry of the atria, the first CNN accurately detects the region of interest (ROI) containing the atria and the second CNN performs targeted regional segmentation of the ROI. The CNN comprises of a U-Net backbone enhanced with residual blocks, pre-activation normalization, and a Dice loss to improve accuracy and convergence. The receptive field of the CNN was increased by using 5 x 5 kernels to capture large variations in the atrial geometry. Our algorithm segments and reconstructs the LA and RA within 2 s, achieving a Dice accuracy of 94% and a surface-tosurface distance error of approximately 1 pixel. To our knowledge, the proposed approach is the first of its kind, and is currently the most robust automatic biatria segmentation method, creating a solid benchmark for future studies.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 10 条
[1]  
Hansen Brian J, 2017, JACC Clin Electrophysiol, V3, P531, DOI 10.1016/j.jacep.2017.05.002
[2]   Atrial Fibrillation Ablation Outcome Is Predicted by Left Atrial Remodeling on MRI [J].
McGann, Christopher ;
Akoum, Nazem ;
Patel, Amit ;
Kholmovski, Eugene ;
Revelo, Patricia ;
Damal, Kavitha ;
Wilson, Brent ;
Cates, Josh ;
Harrison, Alexis ;
Ranjan, Ravi ;
Burgon, Nathan S. ;
Greene, Tom ;
Kim, Dan ;
DiBella, Edward V. R. ;
Parker, Dennis ;
MacLeod, Rob S. ;
Marrouche, Nassir F. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2014, 7 (01) :23-30
[3]   Ablation of Focal Impulses and Rotational Sources: What Can Be Learned from Differing Procedural Outcomes? [J].
Narayan S.M. ;
Rodrigo M. ;
Kowalewski C.A.B. ;
Shenasa F. ;
Meckler G.L. ;
Vishwanathan M.N. ;
Baykaner T. ;
Zaman J.A.B. ;
Wang P.J. .
Current Cardiovascular Risk Reports, 2017, 11 (9)
[4]   Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients With Atrial Fibrillation [J].
Oakes, Robert S. ;
Badger, Troy J. ;
Kholmovski, Eugene G. ;
Akoum, Nazem ;
Burgon, Nathan S. ;
Fish, Eric N. ;
Blauer, Joshua J. E. ;
Rao, Swati N. ;
DiBella, Edward V. R. ;
Segerson, Nathan M. ;
Daccarett, Marcos ;
Windfelder, Jessiciah ;
McGann, Christopher J. ;
Parker, Dennis ;
MacLeod, Rob S. ;
Marrouche, Nassir F. .
CIRCULATION, 2009, 119 (13) :1758-U123
[5]  
Pop M, 2019, STAT ATLASES COMPUTA
[6]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[7]   Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets [J].
Tobon-Gomez, Catalina ;
Geers, Arjan J. ;
Peters, Jochen ;
Weese, Juergen ;
Pinto, Karen ;
Karim, Rashed ;
Ammar, Mohammed ;
Daoudi, Abdelaziz ;
Margeta, Jan ;
Sandoval, Zulma ;
Stender, Birgit ;
Zheng, Yefeng ;
Zuluaga, Maria A. ;
Betancur, Julian ;
Ayache, Nicholas ;
Chikh, Mohammed Amine ;
Dillenseger, Jean-Louis ;
Kelm, B. Michael ;
Mahmoudi, Said ;
Ourselin, Sebastien ;
Schlaefer, Alexander ;
Schaeffter, Tobias ;
Razavi, Reza ;
Rhode, Kawal S. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) :1460-1473
[8]   Fully Automatic Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Using a Dual Fully Convolutional Neural Network [J].
Xiong, Zhaohan ;
Fedorov, Vadim V. ;
Fu, Xiaohang ;
Cheng, Elizabeth ;
Macleod, Rob ;
Zhao, Jichao .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :515-524
[9]   Three-dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural "Fingerprints" of Heart-Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo [J].
Zhao, Jichao ;
Hansen, Brian J. ;
Wang, Yufeng ;
Csepe, Thomas A. ;
Sul, Lidiya V. ;
Tang, Alan ;
Yuan, Yiming ;
Li, Ning ;
Bratasz, Anna ;
Powell, Kimerly A. ;
Kilic, Ahmet ;
Mohler, Peter J. ;
Janssen, Paul M. L. ;
Weiss, Raul ;
Simonetti, Orlando P. ;
Hummel, John D. ;
Fedorov, Vadim V. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2017, 6 (08)
[10]  
Zhuang X., 2019, ARXIV PREPRINT ARXIV