Shapiro's lemma for topological K-theory of groups

被引:15
作者
Chabert, J [1 ]
Echterhoff, S
Oyono-Oyono, H
机构
[1] Univ Clermont Ferrand, Clermont Ferrand, France
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
关键词
topological K-theory; crossed-product groupoid; Baum-Connes conjecture;
D O I
10.1007/s000140300009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X x G be the crossed product groupoid of a locally compact group G acting on a locally compact space X. For any X x G-algebra A we show that a natural forgetful map from the topological K-theory K-*(top)(X x G; A) of the groupoid X x G with coefficients in A to the topological K-theory K-*(top)(G; A) of G with coefficients in A is an isomorphism. We then discuss several interesting consequences of this result for the Baum-Connes conjecture.
引用
收藏
页码:203 / 225
页数:23
相关论文
共 18 条
  • [1] BAAJ S, 1989, K-THEORY, V2, P683
  • [2] Baum P., 1994, CONT MATH, V167, P241
  • [3] Twisted equivariant KK-theory and the Baum-Connes conjecture for group extensions
    Chabert, J
    Echterhoff, S
    [J]. K-THEORY, 2001, 23 (02): : 157 - 200
  • [4] Two remarks about the Baum-Connes map
    Chabert, J
    Echterhoff, S
    Meyer, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07): : 607 - 610
  • [5] Chabert J., 2001, Doc. Math, V6, P127, DOI DOI 10.4171/DM/100
  • [6] Bivariant K-theory and the Novikov conjecture
    Higson, N
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (03) : 563 - 581
  • [7] Counterexamples to the Baum-Connes conjecture
    Higson, N
    Lafforgue, V
    Skandalis, G
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 330 - 354
  • [8] E-theory and KK-theory for groups which act properly and isometrically on Hilbert space
    Higson, N
    Kasparov, G
    [J]. INVENTIONES MATHEMATICAE, 2001, 144 (01) : 23 - 74
  • [9] Kasparov Gennadi, 1991, K-THEORY, V4, P303
  • [10] EQUIVARIANT KK-THEORY AND THE NOVIKOV-CONJECTURE
    KASPAROV, GG
    [J]. INVENTIONES MATHEMATICAE, 1988, 91 (01) : 147 - 201