Generic occurrence of rings in rotating systems

被引:13
作者
Benet, L
Seligman, TH
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca, Morelos, Mexico
[2] Ctr Int Ciencias, Cuernavaca, Morelos, Mexico
关键词
rings; rotating scattering systems; stable orbits; saddle-center bifurcations;
D O I
10.1016/S0375-9601(00)00500-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In rotating scattering systems, the generic saddle-center scenario leads to stable islands in phase space. Non-interacting particles whose initial conditions are defined in such islands will be trapped and form rotating rings. This result is generic and also holds for systems quite different from planetary rings. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 14 条
[1]   Chaotic scattering in the restricted three-body problem II. Small mass parameters [J].
Benet, L ;
Seligman, TH ;
Trautmann, D .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 71 (03) :167-189
[2]   On the special role of symmetric periodic orbits in a chaotic system [J].
Benet, L ;
Jung, C ;
Papenbrock, T ;
Seligman, TH .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 131 (1-4) :254-264
[3]  
BENET L, 2000, IN PRESS PROG THEO S
[4]  
BOLOTIN SV, PERIODIC CHAOTIC TRA
[5]   TRANSITION TO CHAOTIC SCATTERING [J].
DING, M ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1990, 42 (12) :7025-7040
[6]   MASSIVE BIFURCATION OF CHAOTIC SCATTERING [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICS LETTERS A, 1991, 153 (01) :21-26
[7]   Linear stability in billiards with potential [J].
Dullin, HR .
NONLINEARITY, 1998, 11 (01) :151-173
[8]   TOWARDS A THEORY FOR THE URANIAN RINGS [J].
GOLDREICH, P ;
TREMAINE, S .
NATURE, 1979, 277 (5692) :97-99
[9]  
Henon M., 1968, Bulletin Astronomique, V3, P377
[10]   CHAOTIC SCATTERING OFF A ROTATING TARGET [J].
MEYER, N ;
BENET, L ;
LIPP, C ;
TRAUTMANN, D ;
JUNG, C ;
SELIGMAN, TH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09) :2529-2544