Novel Model for Comprehensive Assessment of Robust Prognostic Gene Signature in Ovarian Cancer Across Different Independent Datasets

被引:2
作者
Bing, Zhitong [1 ,2 ,3 ]
Yao, Yuxiang [4 ]
Xiong, Jie [5 ]
Tian, Jinhui [1 ,2 ]
Guo, Xiangqian [6 ]
Li, Xiuxia [1 ,2 ,7 ]
Zhang, Jingyun [1 ,2 ]
Shi, Xiue [8 ]
Zhang, Yanying [9 ]
Yang, Kehu [1 ,2 ,8 ,9 ]
机构
[1] Lanzhou Univ, Evidence Based Med Ctr, Sch Basic Med Sci, Lanzhou, Gansu, Peoples R China
[2] Key Lab Evidence Based Med & Knowledge Translat G, Lanzhou, Gansu, Peoples R China
[3] Chinese Acad Sci, Inst Modern Phys, Dept Computat Phys, Lanzhou, Gansu, Peoples R China
[4] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou, Gansu, Peoples R China
[5] Changsha Univ, Dept Appl Math, Changsha, Hunan, Peoples R China
[6] Henan Univ, Sch Basic Med, Med Bioinformat Inst, Kaifeng, Henan, Peoples R China
[7] Lanzhou Univ, Sch Publ Hlth, Lanzhou, Gansu, Peoples R China
[8] Inst Evidence Based Rehabil Med Gansu Prov, Lanzhou, Gansu, Peoples R China
[9] Gansu Univ Chinese Med, Dept Pharmacol & Toxicol Tradit Chinese Med, Lanzhou, Gansu, Peoples R China
关键词
ovarian cancer; prognosis index; Cox regression; gene signature; robust prognostic model; EXPRESSION ANALYSIS; SYSTEMATIC REVIEWS; SURVIVAL; VALIDATION; GRADE; BIOMARKERS; SUBTYPES; QUALITY; PROFILE;
D O I
10.3389/fgene.2019.00931
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Different analytical methods or models can often find completely different prognostic biomarkers for the same cancer. In the study of prognostic molecular biomarkers of ovarian cancer (OvCa), different studies have reported a variety of prognostic gene signatures. In the current study, based on geometric concepts, the linearity-clustering phase diagram with integrated P-value (LCP) method was used to comprehensively consider three indicators that are commonly employed to estimate the quality of a prognostic gene signature model. The three indicators, namely, concordance index, area under the curve, and level of the hazard ratio were determined via calculation of the prognostic index of various gene signatures from different datasets. As evaluation objects, we selected 13 gene signature models (Cox regression model) and 16 OvCa genomic datasets (including gene expression information and follow-up data) from published studies. The results of LCP showed that three models were universal and better than other models. In addition, combining the three models into one model showed the best performance in all datasets by LCP calculation. The combination gene signature model provides a more reliable model and could be validated in various datasets of OvCa. Thus, our method and findings can provide more accurate prognostic biomarkers and effective reference for the precise clinical treatment of OvCa.
引用
收藏
页数:12
相关论文
共 47 条
  • [1] [Anonymous], EVOLUTION TRANSLATIO
  • [2] [Anonymous], REV COMPUT STAT
  • [3] Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer
    Baggerly, Keith A.
    Coombes, Kevin R.
    Neeley, E. Shannon
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (07) : 1186 - 1187
  • [4] Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms
    Barnes, M
    Freudenberg, J
    Thompson, S
    Aronow, B
    Pavlidis, P
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (18) : 5914 - 5923
  • [5] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [6] Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype of Serous Ovarian Cancer
    Bentink, Stefan
    Haibe-Kains, Benjamin
    Risch, Thomas
    Fan, Jian-Bing
    Hirsch, Michelle S.
    Holton, Kristina
    Rubio, Renee
    April, Craig
    Chen, Jing
    Wickham-Garcia, Eliza
    Liu, Joyce
    Culhane, Aedin
    Drapkin, Ronny
    Quackenbush, John
    Matulonis, Ursula A.
    [J]. PLOS ONE, 2012, 7 (02):
  • [7] Oncogenic pathway signatures in human cancers as a guide to targeted therapies
    Bild, AH
    Yao, G
    Chang, JT
    Wang, QL
    Potti, A
    Chasse, D
    Joshi, MB
    Harpole, D
    Lancaster, JM
    Berchuck, A
    Olson, JA
    Marks, JR
    Dressman, HK
    West, M
    Nevins, JR
    [J]. NATURE, 2006, 439 (7074) : 353 - 357
  • [8] Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary.
    Bonome, T
    Lee, JY
    Park, DC
    Radonovich, M
    Pise-Masison, C
    Brady, J
    Gardner, GJ
    Hao, K
    Wong, WH
    Barrett, JC
    Lu, KH
    Sood, AK
    Gershenson, DM
    Mok, SC
    Birrer, MJ
    [J]. CANCER RESEARCH, 2005, 65 (22) : 10602 - 10612
  • [9] A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer
    Bonome, Tomas
    Levine, Douglas A.
    Shih, Joanna
    Randonovich, Mike
    Pise-Masison, Cindy A.
    Bogomolniy, Faina
    Ozbun, Laurent
    Brady, John
    Barrett, J. Carl
    Boyd, Jeff
    Birrer, Michael J.
    [J]. CANCER RESEARCH, 2008, 68 (13) : 5478 - 5486
  • [10] Crijns APG, 2009, PLOS MED, V6, P181, DOI 10.1371/journal.pmed.1000024