Improving Retinal Image Quality Using Registration with an SIFT Algorithm in Quasi-Confocal Line Scanning Ophthalmoscope

被引:3
作者
He, Yi [1 ]
Wang, Yuanyuan [1 ,2 ,3 ]
Wei, Ling [1 ]
Li, Xiqi [1 ]
Yang, Jinsheng [1 ]
Zhang, Yudong [1 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, Chengdu 610209, Sichuan, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] Wenzhou Med Univ, Wenzhou 325035, Peoples R China
来源
OXYGEN TRANSPORT TO TISSUE XXXIX | 2017年 / 977卷
基金
美国国家科学基金会;
关键词
Confocal microscopy; Feature extraction; Image matching; SIFT; LASER OPHTHALMOSCOPE; HIGH-SPEED; TRACKING;
D O I
10.1007/978-3-319-55231-6_25
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
When high-magnification images are taken with a quasi-confocal line scanning ophthalmoscope (LSO), the quality of images always suffers from Gaussian noise, and the signal to noise ratio (SNR) is very low for a safer laser illumination. In addition, motions of the retina severely affect the stabilization of the real-time video resulting in significant distortions or warped images. We describe a scale-invariant feature transform (SIFT) algorithm to automatically abstract corner points with subpixel resolution and match these points in sequential images using an affine transformation. Once n images are aligned and averaged, the noise level drops by a factor of root n and the image quality is improved. The improvement of image quality is independent of the acquisition method as long as the image is not warped, particularly severely during confocal scanning. Consequently, even better results can be expected by implementing this image processing technique on higher resolution images.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 10 条
  • [1] Line-scanning laser ophthalmoscope
    Hammer, Daniel X.
    Ferguson, R. Daniel
    Ustun, Teoman E.
    Bigelow, Chad E.
    Iftimia, Nicusor V.
    Webb, Robert H.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2006, 11 (04)
  • [2] Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging
    Hammer, DX
    Ferguson, RD
    Bigelow, CE
    Iftimia, NV
    Ustun, TE
    Burns, SA
    [J]. OPTICS EXPRESS, 2006, 14 (08): : 3354 - 3367
  • [3] Extraction of ultra-high frequency retinal motions with a line scanning quasi-confocal ophthalmoscope
    He, Yi
    Wei, Ling
    Wang, Zhibin
    Yang, Jinsheng
    Li, Xiqi
    Shi, Guohua
    Zhang, Yudong
    [J]. JOURNAL OF OPTICS, 2015, 17 (01)
  • [4] High contrast reflective liquid crystal display using a thermochromic reflector
    Heo, Kyong Chan
    Yi, Jonghoon
    Kwon, Jin Hyuk
    Gwag, Jin Seog
    [J]. JOURNAL OF OPTICS, 2015, 17 (02)
  • [5] Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm
    Li, Hao
    Lu, Jing
    Shi, Guohua
    Zhang, Yudong
    [J]. BIOMEDICAL OPTICS EXPRESS, 2010, 1 (01): : 31 - 40
  • [6] Lowe D., 1999, P 7 IEEE INT C COMP, V2, P1150, DOI [10.1109/ICCV.1999.790410, DOI 10.1109/ICCV.1999.790410]
  • [7] Fluorescent infrared scanning-laser ophthalmoscope for three-dimensional visualization: automatic random-eye-motion correction and deconvolution
    O'Connor, NJ
    Bartsch, DU
    Freeman, WJ
    Mueller, AJ
    Holmes, TJ
    [J]. APPLIED OPTICS, 1998, 37 (11) : 2021 - 2033
  • [8] Adaptive optics scanning laser ophthalmoscopy
    Roorda, A
    Romero-Borja, F
    Donnelly, WJ
    Queener, H
    Hebert, TJ
    Campbell, MCW
    [J]. OPTICS EXPRESS, 2002, 10 (09): : 405 - 412
  • [9] High-speed, image-based eye tracking with a scanning laser ophthalmoscope
    Sheehy, Christy K.
    Yang, Qiang
    Arathorn, David W.
    Tiruveedhula, Pavan
    de Boer, Johannes F.
    Roorda, Austin
    [J]. BIOMEDICAL OPTICS EXPRESS, 2012, 3 (10): : 2611 - 2622
  • [10] Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope
    Wang, Zhibin
    Wei, Dan
    Wei, Ling
    He, Yi
    Shi, Guohua
    Wei, Xunbin
    Zhang, Yudong
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (08)