Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction

被引:113
作者
Zhi, Xing [1 ]
Vasileff, Anthony [1 ]
Zheng, Yao [1 ]
Jiao, Yan [1 ]
Qiao, Shi-Zhang [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Ctr Mat Energy & Catalysis CMEC, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
CARBON-DIOXIDE REDUCTION; HYDROGEN EVOLUTION; COPPER ELECTRODES; C-2; PRODUCTS; ELECTROCATALYTIC CONVERSION; SPECTROSCOPIC OBSERVATION; ABSORPTION SPECTROSCOPY; THEORETICAL INSIGHTS; CU ELECTRODES; FORMIC-ACID;
D O I
10.1039/d1ee00740h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction reaction (CRR) is intrinsically complex given the multiple possible reaction pathways and end products. Consequently, selectivity is a persistent challenge for the design and operation of CRR electrocatalysts. A detailed understanding of key elementary steps and surface-bound species involved in the C-1-C-3 pathways is important for directing the reaction to a target product. However, there has been limited success in fully explaining the selectivity of CO2 reduction, such as the competing production of oxygen-free hydrocarbons and oxygen-containing alcohols. Recently, oxygen-bound intermediates have been identified as essential species to help explain the full reaction roadmap for CO2 reduction. This Review explores the important role of oxygen-bound intermediates in affecting CRR selectivity to the many reduction products, ranging from two electron products to higher reduced products. These oxygen-bound intermediates have a big influence on addressing mechanistic aspects of competing reaction pathways, based on extensive analysis of adsorption behaviour, reaction thermodynamics and reaction kinetics. Considering available theoretical calculations, electrochemical measurements and operando spectroscopy observations, we highlight the preferred reaction pathways to certain products when regulated by oxygen-bound species. The geometries of these oxygen-bound intermediates and their binding on a catalyst surface dictate the breakage or preservation of C-O bonds, which has a significant effect on directing selectivity toward a final product. Based on this mechanistic evaluation, we summarize practical techniques for probing the evolution of intermediates and propose possible strategies for promoting the selectivity of electrocatalysts.
引用
收藏
页码:3912 / 3930
页数:19
相关论文
共 130 条
[1]   Selective Heterogeneous CO2 Electroreduction to Methanol [J].
Back, Seoin ;
Kim, Heejin ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (02) :965-971
[2]   Electrochemical CO2 Reduction: Classifying Cu Facets [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
ACS CATALYSIS, 2019, 9 (09) :7894-7899
[3]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[4]   Exclusive Formation of Formic Acid from CO2 Electroreduction by a Tunable Pd-Sn Alloy [J].
Bai, Xiaofang ;
Chen, Wei ;
Zhao, Chengcheng ;
Li, Shenggang ;
Song, Yanfang ;
Ge, Ruipeng ;
Wei, Wei ;
Sun, Yuhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) :12219-12223
[5]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[6]   Lateral Adsorbate Interactions Inhibit HCOO- while Promoting CO Selectivity for CO2 Electrocatalysis on Silver [J].
Bohra, Divya ;
Ledezma-Yanez, Isis ;
Li, Guanna ;
de Jong, Wiebren ;
Pidko, Evgeny A. ;
Smith, Wilson A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) :1345-1349
[7]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[8]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285
[9]   Metal-Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Gu, Jia-Fang ;
Xie, Xiuyuan ;
Zeng, Guang ;
Li, Xiaofang ;
Han, Shu-Guo ;
Zhu, Qi-Long ;
Wu, Xin-Tao ;
Xu, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) :15014-15020
[10]   Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu2O-Derived Copper Catalyst and Palladium(II) Chloride [J].
Chen, Chung Shou ;
Wan, Jane Hui ;
Yeo, Boon Siang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :26875-26882