SOME RESULTS ON *- RICCI FLOW

被引:0
作者
Debnath, Dipankar [1 ]
Basu, Nirabhra [2 ]
机构
[1] Bamanpukur High Sch HS, Dept Math, Nadia 741313, W Bengal, India
[2] Bhawanipur Educ Soc Coll, Dept Math, Kolkata 700020, W Bengal, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2020年 / 35卷 / 05期
关键词
*-Ricci flow; Conformal Ricci flow; F functionals; omega functionals; SOLITONS;
D O I
10.22190/FUMI2005305D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we have introduced the notion of *-Ricci flow and shown that *-Ricci soliton which was introduced by Kaimakamis and Panagiotidou in 2014 is a self similar soliton of the *-Ricci flow. We have also found the deformation of geometric curvature tensors under *-Ricci flow. In the last two section of the paper, we have found the F-functional and omega-functional for *-Ricci flow respectively.
引用
收藏
页码:1305 / 1313
页数:9
相关论文
共 20 条
[1]  
Basu N., PJM PALESTINE J MATH
[2]  
Chow B., 2006, HAMILTONS RICCI FLOW, V77
[3]   *-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds [J].
Dai, Xinxin ;
Zhao, Yan ;
De, Uday Chand .
OPEN MATHEMATICS, 2019, 17 :874-882
[4]  
De K., 2019, B TRANSILVANIA U BRA, V12, pp265
[5]  
Dey D., ARXIV200502194
[6]   An introduction to conformal Ricci flow [J].
Fischer, AE .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (03) :S171-S218
[7]   *-Ricci Soliton within the frame-work of Sasakian and (κ, μ)-contact manifold [J].
Ghosh, Amalendu ;
Patra, Dhriti Sundar .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (07)
[8]  
Hamada T., 2002, TOKYO J MATH, V25, P473, DOI [10.3836/tjm/1244208866, DOI 10.3836/TJM/1244208866]
[9]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255, DOI 10.4310/jdg/1214436922
[10]   CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, μ)-SPACE FORMS [J].
Huchchappa, Aruna Kumara ;
Naik, Devaraja Mallesha ;
Venkatesha, Venkatesha .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04) :1315-1328