An analog of Plya's theorem for multivalued analytic functions with finitely many branch points

被引:4
作者
Suetin, S. P. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
analytic continuation; transfinite diameter; Polya's theorem; Pade polynomial; Stahl-Riemann surface; PADE APPROXIMANTS; ASYMPTOTICS; CONVERGENCE; POLYNOMIALS; ZEROS;
D O I
10.1134/S0001434617050145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analog of Plya's theorem on the estimate of the transfinite diameter for a class of multivalued analytic functions with finitely many branch points and of the corresponding class of admissible compact sets located on the associated (with this function) two-sheeted Stahl-Riemann surface is obtained.
引用
收藏
页码:888 / 898
页数:11
相关论文
共 18 条
[1]   Asymptotics of Hermite-Pade Approximants for Two Functions with Branch Points [J].
Aptekarev, A. I. .
DOKLADY MATHEMATICS, 2008, 78 (02) :717-719
[2]   Pade approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials [J].
Aptekarev, Alexander I. ;
Yattselev, Maxim L. .
ACTA MATHEMATICA, 2015, 215 (02) :217-280
[3]   An analog of Gonchar's theorem for the m-point version of Leighton's conjecture [J].
Buslaev, V. I. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) :127-139
[4]   An analogue of Polya's theorem for piecewise holomorphic functions [J].
Buslaev, V. I. .
SBORNIK MATHEMATICS, 2015, 206 (12) :1707-1721
[5]   On equilibrium problems related to the distribution of zeros of the Hermite-Pad, polynomials [J].
Buslaev, V. I. ;
Suetin, S. P. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) :256-263
[6]   Capacity of a compact set in a logarithmic potential field [J].
Buslaev, V. I. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) :238-255
[7]  
Goluzin G. M., 1966, GEOMETRIC THEORY FUN
[8]  
Ikonomov N. R., 2015, ARXIV150107090
[9]   Convergence of Shafer quadratic approximants [J].
Komlov, A. V. ;
Kruzhilin, N. G. ;
Palvelev, R. V. ;
Suetin, S. P. .
RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (02) :373-375
[10]   Families of vector measures which are equilibrium measures in an external field [J].
Lapik, M. A. .
SBORNIK MATHEMATICS, 2015, 206 (02) :211-224