On embedding expanders into lp spaces

被引:74
作者
Matousek, J [1 ]
机构
[1] Charles Univ, Dept Math Appl, Prague 11800 1, Czech Republic
关键词
D O I
10.1007/BF02773799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we show that the minimum distortion required to embed ail n-point metric spaces into the Banach space e(p) is between (c(1)/p) log n and (c(2)/p) log n, where c(2) > c(1) > 0 are absolute constants and 1 less than or equal to p < log n. The lower bound is obtained by a generalization of a method of Linial et al. [LLR95], by showing that constant-degree expanders (considered as metric spaces) cannot be embedded any better.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 16 条
[1]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[2]  
Alon N., 1992, PROBABILISTIC METHOD
[3]  
[Anonymous], ARK MAT
[4]  
[Anonymous], 1987, GEOMETRICAL ASPECTS
[5]  
[Anonymous], 1992, COMMENT MATH U CAROL
[6]   FINITE METRIC-SPACES NEEDING HIGH DIMENSION FOR LIPSCHITZ EMBEDDINGS IN BANACH-SPACES [J].
ARIASDEREYNA, J ;
RODRIGUEZPIAZZA, L .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 79 (01) :103-111
[7]   ON LIPSCHITZ EMBEDDING OF FINITE METRIC-SPACES IN HILBERT-SPACE [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) :46-52
[8]   ON TYPE OF METRIC-SPACES [J].
BOURGAIN, J ;
MILMAN, V ;
WOLFSON, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 294 (01) :295-317
[9]  
BRETAGNOLLE J, 1966, ANN I H POINCARE B, V2, P231
[10]  
Enflo P., 1969, ARK MATH, V8, P107