Inductive learning inability of artificial neural networks

被引:0
作者
Bhavsar, VC [1 ]
Ghorbani, AA [1 ]
Goldfarb, L [1 ]
机构
[1] Univ New Brunswick, Fac Comp Sci, Fredericton, NB E3B 5A3, Canada
来源
2000 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2: NAVIGATING TO A NEW ERA | 2000年
关键词
neural networks; generalization; inductive learning; learning machines; pattern recognition;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The intrinsic inability of artificial neural networks to generalize from examples, i.e., to learn inductively, is exemplified based on several very simple requirements for an inductive learning machine.
引用
收藏
页码:712 / 716
页数:5
相关论文
共 12 条
[1]   4 TYPES OF LEARNING-CURVES [J].
AMARI, S ;
FUJITA, N ;
SHINOMOTO, S .
NEURAL COMPUTATION, 1992, 4 (04) :605-618
[2]   What Size Net Gives Valid Generalization? [J].
Baum, Eric B. ;
Haussler, David .
NEURAL COMPUTATION, 1989, 1 (01) :151-160
[3]  
Denker J., 1987, Complex Systems, V1, P877
[4]   CAN A VECTOR-SPACE BASED LEARNING-MODEL DISCOVER INDUCTIVE CLASS GENERALIZATION IN A SYMBOLIC ENVIRONMENT [J].
GOLDFARB, L ;
ABELA, J ;
BHAVSAR, VC ;
KAMAT, VN .
PATTERN RECOGNITION LETTERS, 1995, 16 (07) :719-726
[5]  
GOLDFARB L, 1996, P WORKSH IS IND LEAR, P9
[6]  
Hertz J., 1991, Introduction to the Theory of Neural Computation
[7]  
HINTON GE, 1989, ARTIF INTELL, V40, P465
[8]   GENERALIZATION AS SEARCH [J].
MITCHELL, TM .
ARTIFICIAL INTELLIGENCE, 1982, 18 (02) :203-226
[9]   Exhaustive Learning [J].
Schwartz, D. B. ;
Samalam, V. K. ;
Solla, Sara A. ;
Denker, J. S. .
NEURAL COMPUTATION, 1990, 2 (03) :374-385
[10]  
TAYLOR AE, 1987, INTRO FUNCTIONAL ANA, P1134