ON THE EXISTENCE OF BEST PROXIMITY POINTS OF MULTI-VALUED MAPPINGS IN CAT(0) SPACES

被引:7
作者
Amnuaykarn, K. [1 ,2 ]
Kumam, P. [1 ,2 ]
Nantadilok, J. [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, KMUTT Fixed Point Res Lab, Dept Math, Room SCL 802 Fixed Point Lab,Sci Lab Bldg, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, KMUTT Fixed Point Theory & Applicat Res Grp KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Lampang Rajabhat Univ, Dept Math, Lampang, Thailand
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2021年 / 2021卷
关键词
Best proximity point; CAT(0) space; fixed points; Multi-valued mapping; Proximally quasi-nonexpansive mapping; FIXED-POINTS; CONVERGENCE; THEOREM; CONTRACTIONS; ITERATION; MANN;
D O I
10.23952/jnfa.2021.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the best proximity points of multivalued mappings via Mann and Ishikawa iteration schemes. Several convergence theorems of best proximity points are established in the framework of CAT(0) spaces. Our results extend and improve the related results in the literature.
引用
收藏
页数:14
相关论文
共 35 条
[1]   The existence of best proximity points for multivalued non-self-mappings [J].
Abkar, A. ;
Gabeleh, M. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (02) :319-325
[2]   Best proximity points for asymptotic cyclic contraction mappings [J].
Abkar, A. ;
Gabeleh, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :7261-7268
[3]  
[Anonymous], 1989, Buildings
[4]  
Bridson Martin R, 2013, Grund. Math. Wiss., V319
[5]  
Bruhat F., 1972, I HAUTES ETUDES SCI, V41, P5
[6]   A REMARK ON A FIXED-POINT THEOREM FOR ITERATED MAPPINGS [J].
BRYANT, VW .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04) :399-&
[7]   FIXED-POINTS OF GENERALIZED CONTRACTIVE MULTIVALUED MAPPINGS [J].
DAFFER, PZ ;
KANEKO, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (02) :655-666
[8]  
Derafshpour M, 2011, TOPOL METHOD NONL AN, V37, P193
[9]   On Δ-convergence theorems in CAT(0) spaces [J].
Dhompongsa, S. ;
Panyanak, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2572-2579
[10]   Best proximity points for cyclic Meir-Keeler contractions [J].
Di Bari, Cristina ;
Suzuki, Tomonari ;
Vetro, Calogero .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :3790-3794