On the Cartesian product of an arbitrarily partitionable graph and a traceable graph

被引:0
作者
Baudon, Olivier [1 ,2 ]
Bensmail, Julien [1 ,2 ]
Kalinowski, Rafal [3 ]
Marczyk, Antoni [3 ]
Przybylo, Jakub [3 ]
Wozniak, Mariusz [3 ]
机构
[1] Univ Bordeaux, F-33405 Talence, France
[2] CNRS, LaBRI, F-33405 Talence, France
[3] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
关键词
partitions of graphs; Cartesian product of graphs; traceable graphs; TREES;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A graph G of order n is called arbitrarily partitionable (AP, for short) if, for every sequence tau = (n(1), ... , n(k)) of positive integers that sum up to n, there exists a partition (V-1, ... , V-k) of the vertex set V(G) such that each set V-i induces a connected subgraph of order n(i). A graph G is called AP+1 if, given a vertex u is an element of V(G) and an index q is an element of{1, ... , k}, such a partition exists with u is an element of V-q. We consider the Cartesian product of AP graphs. We prove that if G is AP+1 and H is traceable, then the Cartesian product G square H is AP+1. We also prove that G square H is AP, whenever G and H are AP and the order of one of them is not greater than four.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 15 条
[1]   A degree bound on decomposable trees [J].
Barth, D ;
Fournier, H .
DISCRETE MATHEMATICS, 2006, 306 (05) :469-477
[2]   Decomposable trees: a polynomial algorithm for tripodes [J].
Barth, D ;
Baudon, O ;
Puech, J .
DISCRETE APPLIED MATHEMATICS, 2002, 119 (03) :205-216
[3]   On the shape of decomposable trees [J].
Barth, Dominique ;
Fournier, Herve ;
Ravaux, Romain .
DISCRETE MATHEMATICS, 2009, 309 (12) :3882-3887
[4]  
Baudon O., PARTITIONING P UNPUB
[5]   On minimal arbitrarily partitionable graphs [J].
Baudon, Olivier ;
Przybylo, Jakub ;
Wozniak, Mariusz .
INFORMATION PROCESSING LETTERS, 2012, 112 (17-18) :697-700
[6]  
Broersma H, 2009, LECT NOTES COMPUT SC, V5874, P105, DOI 10.1007/978-3-642-10217-2_13
[7]  
Gyri E., 1978, C MATH SOC J BOLYAI, V1976, P485
[8]  
HORNAK M., 2003, OPUSCULA MATH, P49
[9]   On-line arbitrarily vertex decomposable trees [J].
Hornak, Mirko ;
Tuza, Zsolt ;
Wozniak, Mariusz .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (11) :1420-1429
[10]   Dense Arbitrarily Vertex Decomposable Graphs [J].
Hornak, Mirko ;
Marczyk, Antoni ;
Schiermeyer, Ingo ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2012, 28 (06) :807-821