Group determinant formulas and class numbers of cyclotomic fields

被引:1
作者
Jung, Hwan Yup [1 ]
Ahn, Jaehyun
机构
[1] Chungbuk Natl Univ, Dept Math Educ, Cheongju 361763, South Korea
[2] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
cyclotomic unit; cyclotomic function field;
D O I
10.4134/JKMS.2007.44.3.499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let m, n be positive integers or monic polynomials in F-q[T] with n/m. Let K-m and K-m(+) be the m-th cyclotomic field and its maximal real subfield, respectively. In this paper we define two matrices D-m,n(+) and D-m,n(-) whose determinants give us the ratios h(O-Km(+))/h(O-Kn(+)) and h-(O-Km)/h-(O-Kn) with some factors, respectively.
引用
收藏
页码:499 / 509
页数:11
相关论文
共 12 条
[1]   Class number formulae in the form of a product of determinants in function fields [J].
Ahn, J ;
Choi, S ;
Jung, H .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 78 :227-238
[2]   UNITS AND CLASS-GROUPS IN CYCLOTOMIC FUNCTION-FIELDS [J].
GALOVICH, S ;
ROSEN, M .
JOURNAL OF NUMBER THEORY, 1982, 14 (02) :156-184
[3]   A RECURSION FORMULA FOR THE RELATIVE CLASS NUMBER OF THE P(N)-TH CYCLOTOMIC FIELD [J].
GIRSTMAIR, K .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1991, 61 :131-138
[4]  
Jung HY, 2005, MATH COMPUT, V74, P953
[5]   Demjanenko matrix and recursion formula for relative class number over function fields [J].
Jung, HY ;
Ahn, J .
JOURNAL OF NUMBER THEORY, 2003, 98 (01) :55-66
[6]   Formulae for the relative class number of an imaginary abelian field in the form of a determinant [J].
Kucera, R .
NAGOYA MATHEMATICAL JOURNAL, 2001, 163 :167-191
[7]  
ROSEN M, 2002, GRADUAT TEXTS MATH
[8]  
Rosen M., 1987, EXPO MATH, V5, P365
[9]  
Washington LC., 1997, Graduate Texts in Mathematics
[10]  
YIN L, 2007, J NUMBER THEORY, V63, P302