Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimal length

被引:22
作者
Chargui, Y. [1 ]
Chetouani, L. [2 ]
Trabelsi, A. [1 ]
机构
[1] Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 1080, Tunisia
[2] Univ Constantine, Inst Phys, Dept Phys Theor, Route Ain El Bey, Constantine, Algeria
关键词
Klein-Gordon equation; linear potential; minimal length; exact solution; UNCERTAINTY RELATION; DIRAC-EQUATION; QUANTUM-MECHANICS; HYDROGEN; OSCILLATOR; PARTICLES;
D O I
10.1088/1674-1056/19/2/020305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the momentum space representation, we solve the Klein-Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.
引用
收藏
页数:5
相关论文
共 38 条
[11]   Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[12]   RELATIVISTIC-PARTICLES IN ORTHOGONAL ELECTRIC AND MAGNETIC-FIELDS WITH CONFINING SCALAR POTENTIALS [J].
DOMINGUEZADAME, F ;
MENDEZ, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (05) :489-495
[13]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[14]  
Fitio T.V., 2006, J PHYS A, V39, P2143
[15]   FUN AND FRUSTRATION WITH HYDROGEN IN A 1+1 DIMENSION [J].
GALIC, H .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (04) :312-317
[16]   DIRAC-EQUATION FOR A LINEAR POTENTIAL [J].
GLASSER, ML ;
SHAWAGFEH, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (08) :2533-2537
[17]   STRING THEORY BEYOND THE PLANCK SCALE [J].
GROSS, DJ ;
MENDE, PF .
NUCLEAR PHYSICS B, 1988, 303 (03) :407-454
[18]   Maximal localization in the presence of minimal uncertainties in positions and in momenta [J].
Hinrichsen, H ;
Kempf, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2121-2137
[19]  
Hull CM, 1998, J HIGH ENERGY PHYS
[20]  
Hull Geoffrey., 1998, Estudos de Linguas e Culturas de Timor-Leste, V1, P1