Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimal length

被引:22
作者
Chargui, Y. [1 ]
Chetouani, L. [2 ]
Trabelsi, A. [1 ]
机构
[1] Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 1080, Tunisia
[2] Univ Constantine, Inst Phys, Dept Phys Theor, Route Ain El Bey, Constantine, Algeria
关键词
Klein-Gordon equation; linear potential; minimal length; exact solution; UNCERTAINTY RELATION; DIRAC-EQUATION; QUANTUM-MECHANICS; HYDROGEN; OSCILLATOR; PARTICLES;
D O I
10.1088/1674-1056/19/2/020305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the momentum space representation, we solve the Klein-Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.
引用
收藏
页数:5
相关论文
共 38 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   Minimal length uncertainty relation and the hydrogen spectrum [J].
Akhoury, R ;
Yao, YP .
PHYSICS LETTERS B, 2003, 572 (1-2) :37-42
[3]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[4]  
[Anonymous], 2001, JHEP
[5]   Mass, entropy, and holography in asymptotically de Sitter spaces [J].
Balasubramanian, V ;
de Boer, J ;
Minic, D .
PHYSICAL REVIEW D, 2002, 65 (12)
[6]  
BALASUBRAMANIAN V, 2000, JHEP, V105
[7]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[8]   Minimal length uncertainty relation and the hydrogen atom [J].
Brau, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44) :7691-7696
[9]   HYDROGENIC ATOMS IN ONE-PLUS-ONE DIMENSIONS [J].
CAPRI, AZ ;
FERRARI, R .
CANADIAN JOURNAL OF PHYSICS, 1985, 63 (08) :1029-1031
[10]   Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)