Exponential stability of laminated Timoshenko beams with boundary/internal controls

被引:35
作者
Alves, M. S. [1 ]
Monteiro, R. N. [1 ]
机构
[1] Univ Fed Vicosa, Dept Math, BR-36570000 Vicosa, MG, Brazil
关键词
Laminated Timoshenko systems; Dissipative systems; Exponential stability; ASYMPTOTIC-BEHAVIOR; STABILIZATION; SYSTEMS; SHEAR;
D O I
10.1016/j.jmaa.2019.123516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a laminated Timoshenko system with slip along the interface, we study existence and boundary/interior stabilization of solutions. Our first main result, using resolvent estimates in the frequency domain, is to show that interior damping created by the interfacial slip in companion with boundary feedback controls acting on the complementary displacements (traverse and rotation angle) drives the solution to zero with exponential decay rate. We impose neither conditions on the physical parameters of the model nor on the damping coefficients. Our second main result is to investigate the asymptotic behavior of solutions for partially dissipative problems. Assuming the condition that the waves travel at the same speed, we prove the decay of solutions with exponential rate. Finally, the same condition allows us to show that dissipative effect created by the interfacial slip is strong enough to exponentially stabilizes the solutions to zero. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 29 条
[1]   Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control [J].
Alabau-Boussouira, Fatiha .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6) :643-669
[2]   Stability to 1-D thermoelastic Timoshenko beam acting on shear force [J].
Almeida Junior, Dilberto da S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1233-1249
[3]   Non-Homogeneous Thermoelastic Timoshenko Systems [J].
Alves, M. S. ;
Jorge Silva, M. A. ;
Ma, T. F. ;
Munoz Rivera, J. E. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03) :461-484
[4]   Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems [J].
Alves, M. S. ;
Jorge Silva, M. A. ;
Ma, T. F. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[5]   Stabilization of the nonuniform Timoshenko beam [J].
Ammar-Khodja, Farid ;
Kerbal, Sebti ;
Soufyane, Abdelaziz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :525-538
[6]   Uniform stability of a laminated beam with structural damping and second sound [J].
Apalara, Tijani A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02)
[7]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[8]   Artificial boundary condition for a modified fractional diffusion problem [J].
Awotunde, Abeeb A. ;
Ghanam, Ryad A. ;
Tatar, Nasser-eddine .
BOUNDARY VALUE PROBLEMS, 2015, :1-17
[9]   Indirect boundary stabilization of the Timoshenko system [J].
Bassam, Maya ;
Mercier, Denis ;
Nicaise, Serge ;
Wehbe, Ali .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (7-8) :379-384
[10]   On the stability of Timoshenko systems with Gurtin-Pipkin thermal law [J].
Dell' Oro, Filippo ;
Pata, Vittorino .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (02) :523-548