On epistasis for measure of genetic algorithm hardness

被引:1
|
作者
Qu, Baida [1 ]
Xu, Baoguo [1 ]
机构
[1] Southern Yangtze Univ, Control Sci & Engn Res Ctr, 1800 Lihu Rd, Jiangsu 214122, Peoples R China
来源
NAFIPS 2006 - 2006 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2 | 2006年
关键词
genetic algorithms; hardness; epistasis; NK-models;
D O I
10.1109/NAFIPS.2006.365862
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the essence of epistasis and its significance in measuring genetic algorithm hardness, a theoretical analysis and a practical research are processed. Based on the analysis of the Euclidean normalization of epistasis variance and the extent of epistasis coefficient, which reflect the extent of epistasis or genetic algorithms, two theorems are formulated and proved. Then the experiments using some elementary functions and NK-models are carried out to verify the method. The obtained results show that the method can determine the difficult genetic algorithm hardness problems, but may misdetermine some easy ones, some times.
引用
收藏
页码:73 / +
页数:2
相关论文
共 50 条
  • [1] An epistasis measure based on the analysis of variance for the realcoded representation in genetic algorithms
    Chan, KY
    Aydin, ME
    Fogarty, TC
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 297 - 304
  • [2] Practical Search Index as a Hardness Measure for Genetic Algorithms
    Li, Zhenhua
    Goodman, Erik D.
    JOURNAL OF COMPUTERS, 2013, 8 (08) : 2034 - 2041
  • [3] GADGETS: a genetic algorithm for detecting epistasis using nuclear families
    Nodzenski, Michael
    Shi, Min
    Krahn, Juno M.
    Wise, Alison S.
    Li, Yuanyuan
    Li, Leping
    Umbach, David M.
    Weinberg, Clarice R.
    BIOINFORMATICS, 2022, 38 (04) : 1052 - 1058
  • [4] Genetic epistasis in Whipple
    Martinetti, Miryam
    Pasi, Annamaria
    Biagi, Federico
    Badulli, Carla
    Garlaschelli, Fabio
    Pizzochero, Cinzia
    Salvaneschi, Laura
    Corazza, Gino R.
    TISSUE ANTIGENS, 2009, 73 (05): : 498 - 499
  • [5] EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm
    Chen, Yuanyuan
    Xu, Fengjiao
    Pian, Cong
    Xu, Mingmin
    Kong, Lingpeng
    Fang, Jingya
    Li, Zutan
    Zhang, Liangyun
    GENES, 2021, 12 (02) : 1 - 18
  • [6] Optimization of focus measure using Genetic Algorithm
    Lee, Ik-Hyun
    Mahmood, Muhammad Tariq
    Choi, Tae-Sun
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXI, 2008, 7073
  • [7] Higher epistasis in genetic algorithms
    Iglesias, M. T.
    Penaranda, V. S.
    Vidal, C.
    Verschoren, A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (02) : 225 - 243
  • [8] Research on Diversity Measure of Niche Genetic Algorithm
    Yuan, Lihua
    Li, Ming
    Li, Junhua
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 47 - 50
  • [9] REDETERMINATION OF GENETIC FORMULAS AND THE EPISTASIS
    STROGANOV, AN
    KITLAEV, BN
    CHIKAEV, RA
    GENETIKA, 1989, 25 (08): : 1514 - 1518
  • [10] THE CAUSES OF EPISTASIS IN GENETIC NETWORKS
    Macia, Javier
    Sole, Ricard V.
    Elena, Santiago F.
    EVOLUTION, 2012, 66 (02) : 586 - 596