Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation

被引:9
作者
Han, Jiangbo [1 ]
Xu, Runzhang [1 ]
Yang, Yanbing [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourth order damped wave equation; asymptotic behavior; finite time blow up; arbitrarily positive initial energy; WAVE-EQUATIONS; GLOBAL-SOLUTIONS; ATTRACTORS; EXISTENCE; MICROSTRUCTURE; NONEXISTENCE; STRAIN;
D O I
10.3233/ASY-201621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the initial boundary value problem for a class of fourth order nonlinear damped wave equations modeling longitudinal motion of an elasto-plastic bar. By applying a suitable potential well-convexity method, we derive the global existence, asymptotic behavior and finite time blow up for the considered problem with more generalized nonlinear functions at subcritical initial energy level. Further for arbitrarily positive initial energy we give some sufficient conditions ensuring finite time blow up.
引用
收藏
页码:349 / 369
页数:21
相关论文
共 29 条
[1]   THE EFFECT OF MICROSTRUCTURE ON ELASTIC-PLASTIC MODELS [J].
AN, LJ ;
PEIRCE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (03) :708-730
[2]   A WEAKLY NONLINEAR-ANALYSIS OF ELASTO-PLASTIC-MICROSTRUCTURE MODELS [J].
AN, LJ ;
PEIRCE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) :136-155
[3]   Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity [J].
Chen, Hua ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4424-4442
[4]   Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :148-167
[5]  
Chen Y.X., 2020, NONLINEAR ANAL, V192, P35
[6]  
Chueshov I, 2006, DISCRETE CONT DYN-A, V15, P777
[7]  
Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII
[8]   On Global Attractor for 2D Kirchhoff-Boussinesq Model with Supercritical Nonlinearity [J].
Chueshov, Igor ;
Lasiecka, Irena .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (01) :67-99
[9]  
Chueshov Igor., 2006, Milan J. Math, V74, P117, DOI DOI 10.1007/S00032-006-0050-8
[10]   Dynamics around the ground state of a nonlinear evolution equation [J].
Esquivel-Avila, Jorge A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E331-E343