2D-Photonic crystal heterostructures for the realization of compact photonic devices

被引:27
作者
Butt, M. A. [1 ,3 ]
Khonina, S. N. [1 ,2 ]
Kazanskiy, N. L. [1 ,2 ]
机构
[1] Samara Natl Res Univ, Samara 443086, Russia
[2] FSRC Crystallog & Photon RAS, Inst RAS Branch, Samara 443001, Russia
[3] Warsaw Univ Technol, Inst Microelect & Optoelect, Koszykowa 75, PL-00662 Warsaw, Poland
基金
俄罗斯科学基金会;
关键词
Heterostructure 2D-photonic crystal; Beam steering; Polarization beam splitter; Transverse magnetic polarization-maintaining devices; WAVE-GUIDE BENDS; BEAM SPLITTER; DESIGN; TRANSMISSION; LIGHT; FIBER;
D O I
10.1016/j.photonics.2021.100903
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, we presented a novel design of polarization beam splitter (PBS) based on the integration of heterostructure 2D- Photonic crystals (PhCs). Two PhC structures, namely PhC-type 1 and PhC-type 2, with different transmission characteristics are proposed. The first type of PhC is composed of a 2D-periodic array of circular air holes embedded in silicon substrate which facilitates the propagation of self-collimated TE and TM-polarized light. The second type of PhC consists of a 2D-periodic array of square-shaped air holes embedded in silicon substrate which carry a photonic bandgap (PBG) for TE-polarized light whereas TM-polarized light propagates unaffected by diffraction. When PhC-type 2 structure is arranged at 45 degrees on both sides of the PhC-type 1 structure, this combination leads to the formation of PBS with a polarization extinction ratio (PER) as high as 30.7 dB. Furthermore, the same structure can be used to steer the TE-polarized light at 180 degrees in a small footprint. Additionally, the heterostructure PhC can be used for TM-polarization maintain devices.
引用
收藏
页数:8
相关论文
共 40 条
[21]   Superprism phenomena in photonic crystals [J].
Kosaka, H ;
Kawashima, T ;
Tomita, A ;
Notomi, M ;
Tamamura, T ;
Sato, T ;
Kawakami, S .
PHYSICAL REVIEW B, 1998, 58 (16) :10096-10099
[22]   Design of a compact photonic-crystal-based polarizing beam splitter [J].
Liu, T ;
Zakharian, AR ;
Fallahi, M ;
Moloney, JV ;
Mansuripur, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (07) :1435-1437
[23]   High transmission through sharp bends in photonic crystal waveguides [J].
Mekis, A ;
Chen, JC ;
Kurland, I ;
Fan, SH ;
Villeneuve, PR ;
Joannopoulos, JD .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3787-3790
[24]   Self-Collimation in Photonic Crystals: Applications and Opportunities [J].
Noori, Mina ;
Soroosh, Mohammad ;
Baghban, Hamed .
ANNALEN DER PHYSIK, 2018, 530 (02)
[25]   Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio TM-pass polarization filter [J].
Prakash, Chandra ;
Sen, Mrinal .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (02)
[26]   Different kinds of band-pass filters based on one-dimensional photonic crystal heterostructures [J].
Qiang, Hai-Xia ;
Jiang, Li-Yong ;
Li, Xiang-Yin ;
Jia, Wei .
OPTIK, 2011, 122 (20) :1836-1839
[27]   Y-shaped beam splitter by graded structure design in a photonic crystal [J].
Ren Kun ;
Ren XiaoBin .
CHINESE SCIENCE BULLETIN, 2012, 57 (11) :1241-1245
[28]   Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon [J].
Schinke, Carsten ;
Peest, P. Christian ;
Schmidt, Jan ;
Brendel, Rolf ;
Bothe, Karsten ;
Vogt, Malte R. ;
Kroeger, Ingo ;
Winter, Stefan ;
Schirmacher, Alfred ;
Lim, Siew ;
Nguyen, Hieu T. ;
MacDonald, Daniel .
AIP ADVANCES, 2015, 5 (06)
[29]   Polarization beam splitter based on a photonic crystal heterostructure [J].
Schonbrun, E. ;
Wu, Q. ;
Park, W. ;
Yamashita, T. ;
Summers, C. J. .
OPTICS LETTERS, 2006, 31 (21) :3104-3106
[30]   Heterostructure photonic crystals: theory and applications [J].
Sharkawy, A ;
Shi, S ;
Prather, DW .
APPLIED OPTICS, 2002, 41 (34) :7245-7253