Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions

被引:27
作者
Ding, Juntang [1 ]
Guo, Bao-Zhu [1 ,2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Wits, Johannesburg, South Africa
基金
中国国家自然科学基金;
关键词
Parabolic equation; Global solution; Blow-up solution; Neumann boundary condition; SEMILINEAR HEAT-EQUATION; CRITICAL EXPONENTS; DIFFUSION; THEOREMS;
D O I
10.1016/j.camwa.2010.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global and blow-up solutions of the following problem: {(h(u))(t) = del center dot (a(u, t)b(x)del u) + g(t)f(u) in D x (0, T), partial derivative u/partial derivative n = 0 on partial derivative D x (0, T), u(x, 0) = u(0)(x) > 0 in (D) over bar, where D subset of R(N) is a bounded domain with smooth boundary partial derivative D. By constructing auxiliary functions and using maximum principles and comparison principles, the sufficient conditions for the existence of global solution, an upper estimate of the global solution, the sufficient conditions for the existence of the blow-up solution, an upper bound for the "blow-up time", and an upper estimate of the "blow-up rate" are specified under some appropriate assumptions on the functions a. b, f. g. and h. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:670 / 679
页数:10
相关论文
共 21 条
[1]   THE BLOW-UP BEHAVIOR OF THE HEAT-EQUATION WITH NEUMANN BOUNDARY-CONDITIONS [J].
DENG, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 188 (02) :641-650
[2]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[3]   Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions [J].
Ding, Juntang ;
Li, Shengjia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) :507-514
[4]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[5]  
Friedman A., 1983, Partial Differential Equations
[6]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[7]   Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions [J].
Gao, Xuyan ;
Ding, Juntang ;
Guo, Bao-Zhu .
APPLICABLE ANALYSIS, 2009, 88 (02) :183-191
[8]   ON BLOW-UP OF SOLUTIONS FOR QUASI-LINEAR DEGENERATE PARABOLIC EQUATIONS [J].
IMAI, T ;
MOCHIZUKI, K .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1991, 27 (05) :695-709
[9]   Blow-up problems for a semilinear heat equation with large diffusion [J].
Ishige, K ;
Yagisita, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 212 (01) :114-128
[10]  
ISHIGE K., 2003, DIFFERENTIAL INTEGRA, V16, P663