The metric theory of the pair correlation function of real-valued lacunary sequences

被引:8
作者
Rudnick, Zeev [1 ]
Technau, Niclas [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
D O I
10.1215/00192082-8720506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {a(x)}(x=1)(infinity) be a positive, real-valued, lacunary sequence. This note shows that the pair correlation function of the fractional parts of the dilations alpha a(x) is Poissonian for Lebesgue almost every alpha is an element of R. By using harmonic analysis, our result-irrespective of the choice of the real-valued sequence {a(x)}(x=1)(infinity)-can essentially be reduced to showing that the number of solutions to the Diophantine inequality vertical bar n(1)(a(x(1)) - a(y(1))) - n(2)(a(x(2)) - a(y(2)))vertical bar < 1 in integer six-tuples (n(1), n(2), x(1), x(2), y(1), y(2)) located in the box [-N, N](6) with the "excluded diagonals"; that is, x(1) not equal y(1), x(2) not equal y(2), (n(1), n(2)) not equal (0,0), is at most N4-8 for some fixed delta > 0, for all sufficiently large N.
引用
收藏
页码:583 / 594
页数:12
相关论文
共 13 条
[1]  
Aistleitner C., ISR J MATH
[2]   Additive energy and the Hausdorff dimension of the exceptional set in metric pair correlation problems [J].
Aistleitner, Christoph ;
Larcher, Gerhard ;
Lewko, Mark .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 222 (01) :463-485
[3]  
[Anonymous], 1974, Pure Appl. Math.
[4]   Low discrepancy sequences failing Poissonian pair correlations [J].
Becher, Veronica ;
Carton, Olivier ;
Mollo Cunningham, Ignacio .
ARCHIV DER MATHEMATIK, 2019, 113 (02) :169-178
[5]   ADDITIVE ENERGY AND THE METRIC POISSONIAN PROPERTY [J].
Bloom, Thomas F. ;
Chow, Sam ;
Gafni, Ayla ;
Walker, Aled .
MATHEMATIKA, 2018, 64 (03) :679-700
[6]   Pair correlation of fractional parts derived from rational valued sequences [J].
Chaubey, Sneha ;
Lanius, Melinda ;
Zaharescu, Alexandru .
JOURNAL OF NUMBER THEORY, 2015, 151 :147-158
[7]   THE TWO-POINT CORRELATION FUNCTION OF THE FRACTIONAL PARTS OF √n IS POISSON [J].
El-Baz, Daniel ;
Marklof, Jens ;
Vinogradov, Ilya .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) :2815-2828
[8]   On exceptional sets in the metric Poissonian pair correlations problem [J].
Lachmann, Thomas ;
Technau, Niclas .
MONATSHEFTE FUR MATHEMATIK, 2019, 189 (01) :137-156
[9]   Some negative results related to Poissonian pair correlation problems [J].
Larcher, Gerhard ;
Stockinger, Wolfgang .
DISCRETE MATHEMATICS, 2020, 343 (02)
[10]   THE CHAMPERNOWNE CONSTANT IS NOT POISSONIAN [J].
Pirsic, Isabel ;
Stockinger, Wolfgang .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 60 (02) :253-262