Limit Cycle Bifurcations Near a Heteroclinic Loop with Two Nilpotent Cusps of General Order

被引:2
作者
Yang, Junmin [1 ]
Hu, Xing [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2022年 / 32卷 / 06期
基金
中国国家自然科学基金;
关键词
Melnikov function; limit cycle; bifurcation; nilpotent cusp; CUSPIDAL LOOP; LIENARD SYSTEMS; NUMBER; PERTURBATIONS;
D O I
10.1142/S0218127422500833
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the expansion of the first order Melnikov function near a heteroclinic loop with two nilpotent cusps of general order. More precisely, the order of the two cusps is m(1) and m(2) respectively, where m(i) >= 1, m(i) is an element of Z(+). For general m(1) and m(2), we give the expansion of the first order Melnikov function and the formulas for the first few coefficients. We further give a general theorem on the number of limit cycles bifurcated from the heteroclinic loop. These results extend the existing results for m(1) = m(2) = 1, m(1) = m(2) = 2 and m(1) = 1, m(2) = 2. As an application, these results are applied to study the number of limit cycles near a heteroclinic loop with two cusps of different order.
引用
收藏
页数:17
相关论文
共 25 条
[1]  
Arnold V.I., 1977, Funct. Anal. Appl., V11, P85, DOI [10.1007/BF01081886, DOI 10.1007/BF01081886]
[2]   Limit cycle bifurcation by perturbing a cuspidal loop of order 2 in a Hamiltonian system [J].
Atabaigi, Ali ;
Zangeneh, Hamid R. Z. ;
Kazemi, Rasool .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1945-1958
[3]   THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :359-366
[4]   Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces [J].
Christopher, C ;
Lynch, S .
NONLINEARITY, 1999, 12 (04) :1099-1112
[5]   Bifurcation of limit cycles near heteroclinic loops in near-Hamiltonian systems [J].
Geng, Wei ;
Tian, Yun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
[6]  
Han M., 1999, Ann. Differ. Equat, V15, P113
[7]  
Han M., 1998, Ann. Differ. Equ., V14, P156
[8]  
HAN MA, 1994, SCI CHINA SER A, V37, P1325
[9]   Limit Cycles Near Homoclinic and Heteroclinic Loops [J].
Han, Maoan ;
Yang, Junmin ;
Tarta, Alexandrina -Alina ;
Gao, Yang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) :923-944
[10]   Polynomial Hamiltonian systems with a nilpotent critical point [J].
Han, Maoan ;
Shu, Chenggang ;
Yang, Junmin ;
Chian, Abraham C. -L. .
ADVANCES IN SPACE RESEARCH, 2010, 46 (04) :521-525