SOME RESULT ON LIE IDEALS WITH SYMMETRIC REVERSE BI-DERIVATIONS IN SEMIPRIME RINGS I

被引:1
作者
Sogutcu, Emine Koc [1 ]
Golbasi, Oznur [1 ]
机构
[1] Sivas Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2021年 / 36卷 / 02期
关键词
Lie ideals; bi-derivations; actions of Lie algebras;
D O I
10.22190/FUMI200708023K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring, U a square-closed Lie ideal of R and D : R x R -> R a symmetric reverse bi-derivation and d be the trace of D: In the present paper, we shall prove that R is commutative ring if any one of the following holds: i) d(U) = (0); ii)d(U) subset of Z; iii)[d (x), y] is an element of Z, iv)d(x)oy is an element of Z, v)d ([x, y]) +/- [d(x), y] is an element of Z, vi)d (x o y) +/- (d(x) oy) is an element of Z, vii)d ([x, y]) +/- d(x) oy is an element of Z viii)d (x o y) +/- [d(x), y] is an element of Z, ix)d(x) oy +/-[d(y), x] is an element of Z, x)d([x, y]) (d(x) oy) [d(y), x] is an element of Z xi)[d(x), y]+/- [g(y), x] is an element of Z, for all x, y is an element of U, where G : R x R -> R is symmetric reverse bi-derivation such that g is the trace of G.z
引用
收藏
页码:309 / 319
页数:11
相关论文
共 10 条
[1]  
Bedir Z., 2020, ADIYAMAN U J SCI, V10, P548
[2]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[3]  
Daif M. N., 1992, Internat. J. Math. & Math. Sci., V15, P205
[4]  
Herstein I. N., 1978, Canad. Math. Bull., V21, P369
[5]  
Maksa G, 1980, Glas. Mat. Ser., V15, P279
[6]  
Maksa Gy., 1987, C R MATH REP ACAD SC, V9, P303
[7]  
Posner E. C., 1957, Proc. Amer. Math. Soc, V8, P1093, DOI [DOI 10.1090/S0002-9939-1957-0095863-0, 10.2307/2032686, DOI 10.2307/2032686]
[8]  
Samman M. S., 2003, INT J PURE APPL MATH, V5, P465
[9]  
Vukman J., 1989, Aequationes Math., V38, P245, DOI 10.1007/BF01840009
[10]  
Vukman J., 1990, Aequationes Math., V40, P181, DOI DOI 10.1007/BF02112294