Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems

被引:432
作者
Alkhateeb, Ahmed [1 ]
Heath, Robert W., Jr. [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Frequency selective; hybrid analog/digital precoding; millimeter wave communications; spatial-multiplexing codebooks; CHANNEL ESTIMATION; MIMO CHANNELS; DESIGN; ANALOG; OFDM; 5G; QUANTIZATION; TECHNOLOGY; NETWORKS; CAPACITY;
D O I
10.1109/TCOMM.2016.2549517
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hybrid analog/digital precoding offers a compromise between hardware complexity and system performance in millimeter wave (mmWave) systems. This type of precoding allows mmWave systems to leverage large antenna array gains that are necessary for sufficient link margin, while permitting low cost and power consumption hardware. Most prior work has focused on hybrid precoding for narrow-band mmWave systems, with perfect or estimated channel knowledge at the transmitter. MmWave systems, however, will likely operate on wideband channels with frequency selectivity. Therefore, this paper considers wideband mmWave systems with a limited feedback channel between the transmitter and receiver. First, the optimal hybrid precoding design for a given RF codebook is derived. This provides a benchmark for any other heuristic algorithm and gives useful insights into codebook designs. Second, efficient hybrid analog/digital codebooks are developed for spatial multiplexing in wideband mmWave systems. Finally, a low-complexity yet near-optimal greedy frequency selective hybrid precoding algorithm is proposed based on Gram-Schmidt orthogonalization. Simulation results show that the developed hybrid codebooks and precoder designs achieve very-good performance compared with the unconstrained solutions while requiring much less complexity.
引用
收藏
页码:1801 / 1818
页数:18
相关论文
共 71 条
[1]   Riemannian geometry of Grassmann manifolds with a view on algorithmic computation [J].
Absil, PA ;
Mahony, R ;
Sepulchre, R .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) :199-220
[2]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[3]  
Alkhateeb A, 2016, INT CONF ACOUST SPEE, P3396, DOI 10.1109/ICASSP.2016.7472307
[4]   MIMO Precoding and Combining Solutions for Millimeter-Wave Systems [J].
Alkhateeb, Ahmed ;
Mo, Jianhua ;
Gonzalez-Prelcic, Nuria ;
Heath, Robert W., Jr. .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (12) :122-131
[5]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[6]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[7]  
[Anonymous], 80211N IEEE
[8]  
[Anonymous], WIRELESSHD SPEC VER
[9]  
[Anonymous], 2015, ARXIV150901653
[10]  
[Anonymous], 2012, INTRO SMOOTH MANIFOL