Towards overcoming the Monte Carlo sign problem with tensor networks

被引:19
作者
Banuls, Mari Carmen [1 ]
Cichy, Krzysztof [2 ,3 ]
Cirac, J. Ignacio [1 ]
Jansen, Karl [4 ]
Kuehn, Stefan [1 ]
Saito, Hana [5 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Goethe Univ Frankfurt Main, Inst Theoret Phys, Max Laue Str 1, D-60438 Frankfurt, Germany
[3] Adam Mickiewicz Univ, Fac Phys, Umultowska 85, D-61614 Poznan, Poland
[4] DESY, NIC, Platanenallee 6, D-15738 Zeuthen, Germany
[5] AISIN AW Co Ltd, 10 Takane,Fujii Cho, Anjo, Aichi 4441192, Japan
来源
XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM | 2017年 / 137卷
关键词
ENTANGLED PAIR STATES; FORMULATION;
D O I
10.1051/epjconf/201713704001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of lattice gauge theories with Monte Carlo simulations is hindered by the infamous sign problem that appears under certain circumstances, in particular at non-zero chemical potential. So far, there is no universal method to overcome this problem. However, recent years brought a new class of non-perturbative Hamiltonian techniques named tensor networks, where the sign problem is absent. In previous work, we have demonstrated that this approach, in particular matrix product states in 1 + 1 dimensions, can be used to perform precise calculations in a lattice gauge theory, the massless and massive Schwinger model. We have computed the mass spectrum of this theory, its thermal properties and real-time dynamics. In this work, we review these results and we extend our calculations to the case of two flavours and non-zero chemical potential. We are able to reliably reproduce known analytical results for this model, thus demonstrating that tensor networks can tackle the sign problem of a lattice gauge theory at finite density.
引用
收藏
页数:10
相关论文
共 38 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]   Thermal evolution of the Schwinger model with matrix product operators [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. ;
Saito, H. .
PHYSICAL REVIEW D, 2015, 92 (03)
[3]   Chiral condensate in the Schwinger model with matrix product operators [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Jansen, Karl ;
Saito, Hana .
PHYSICAL REVIEW D, 2016, 93 (09)
[4]  
Buyens B., 2016, POS LATTICE, V2015, P280
[5]   Hamiltonian simulation of the Schwinger model at finite temperature [J].
Buyens, Boye ;
Verstraete, Frank ;
Van Acoleyen, Karel .
PHYSICAL REVIEW D, 2016, 94 (08)
[6]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[7]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[8]   Bosonized massive N-flavour Schwinger model [J].
Hosotani, Y ;
Rodriguez, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (49) :9925-9955
[9]   Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions [J].
Jordan, J. ;
Orus, R. ;
Vidal, G. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[10]   EQUIVALENCE AND SOLUTION OF ANISOTROPIC SPIN-1 MODELS AND GENERALIZED T-J FERMION MODELS IN ONE DIMENSION [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :L955-L959