Edge resonance in an elastic semi-strip

被引:41
作者
Roitberg, I
Vassiliev, D
Weidl, T
机构
[1] Chernigov State Pedag Inst, Dept Math Anal, UA-250038 Chernigov, Ukraine
[2] Univ Sussex, Sch Math Sci, Brighton BN1 9QH, E Sussex, England
[3] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1093/qjmam/51.1.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the elasticity operator in a semi-strip subject to free boundary conditions. In the case of zero Poisson ratio we prove the existence of a positive eigenvalue embedded in the essential spectrum. Physically, the eigenvalue corresponds to a 'trapped mode', that is, a harmonic oscillation of the semi-strip localized near the edge. This effect, known in mechanics as the 'edge resonance', has been extensively studied numerically and experimentally. Our result provides a mathematical justification.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[22]   THE PROBLEM OF STEADY-STATE OSCILLATIONS OF A TRANSVERSALLY ISOTROPIC HALF-CYLINDER [J].
SHKALIKOV, AA ;
SHKRED, AV .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 73 (02) :579-602
[23]   THE PROBLEM ON THE STEADY-STATE OSCILLATIONS OF A TRANSVERSALLY ISOTROPIC SEMICYLINDER WITH A FREE-BOUNDARY [J].
SHKALIKOV, AA .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :155-158
[24]   REFLECTION OF WAVE TRAINS IN SEMI-INFINITE PLATES [J].
TORVIK, PJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1967, 41 (02) :346-&
[25]   RESPONSE OF AN ELASTIC PLATE TO A CYCLIC LONGITUDINAL FORCE [J].
TORVIK, PJ ;
MCCLATCHEY, JJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1968, 44 (01) :59-+