Edge resonance in an elastic semi-strip

被引:41
作者
Roitberg, I
Vassiliev, D
Weidl, T
机构
[1] Chernigov State Pedag Inst, Dept Math Anal, UA-250038 Chernigov, Ukraine
[2] Univ Sussex, Sch Math Sci, Brighton BN1 9QH, E Sussex, England
[3] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1093/qjmam/51.1.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the elasticity operator in a semi-strip subject to free boundary conditions. In the case of zero Poisson ratio we prove the existence of a positive eigenvalue embedded in the essential spectrum. Physically, the eigenvalue corresponds to a 'trapped mode', that is, a harmonic oscillation of the semi-strip localized near the edge. This effect, known in mechanics as the 'edge resonance', has been extensively studied numerically and experimentally. Our result provides a mathematical justification.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[11]  
Gol'denveizer A L., 1961, Theory of Elastic Thin Shells
[12]   THE REFLECTION OF A SYMMETRIC RAYLEIGH-LAMB WAVE AT THE FIXED OR FREE EDGE OF A PLATE [J].
GREGORY, RD ;
GLADWELL, I .
JOURNAL OF ELASTICITY, 1983, 13 (02) :185-206
[13]  
Grinchenko V. T., 1981, Harmonic Oscillations and Waves in Elastic Bodies
[14]  
Grinchenko VT., 1980, PRIKLADNAYA MEKHANIK, V16, P58
[16]  
Lamb H., 1889, Proc. London Math. Soc, V21, P70, DOI 10.1112/plms/s1-21.1.70
[17]  
Landau L.D., 1986, Theory of Elasticity, Course of Theoretical Physics, V7
[18]   EDGE MODE OF THIN RECTANGULAR PLATE OF BARIUM TITANATE [J].
ONOE, M ;
PAO, YH .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1961, 33 (11) :1628-&
[19]  
RAYLEIGH, 1888, P LOND MATH SOC, V20, P225
[20]  
REED M., 1979, Methods of Modern Mathematical Physics