Edge resonance in an elastic semi-strip

被引:41
作者
Roitberg, I
Vassiliev, D
Weidl, T
机构
[1] Chernigov State Pedag Inst, Dept Math Anal, UA-250038 Chernigov, Ukraine
[2] Univ Sussex, Sch Math Sci, Brighton BN1 9QH, E Sussex, England
[3] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1093/qjmam/51.1.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the elasticity operator in a semi-strip subject to free boundary conditions. In the case of zero Poisson ratio we prove the existence of a positive eigenvalue embedded in the essential spectrum. Physically, the eigenvalue corresponds to a 'trapped mode', that is, a harmonic oscillation of the semi-strip localized near the edge. This effect, known in mechanics as the 'edge resonance', has been extensively studied numerically and experimentally. Our result provides a mathematical justification.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[1]   VARIATIONAL ANALYSIS OF EDGE RESONANCE IN A SEMI-INFINITE PLATE [J].
AULD, BA ;
TSAO, EM .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1977, 24 (05) :317-326
[2]  
Birman M. S., 1962, VESTNIK LENINGRAD U, V17
[3]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[4]  
CHAU LK, 1984, VESTNIK MOSKOW U M, V5, P57
[5]  
DAVIES EB, IN PRESS Q JL MECH A
[6]   End resonance in infinite immersed rods of different cross sections [J].
deBilly, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (01) :92-97
[7]   EXISTENCE THEOREMS FOR TRAPPED MODES [J].
EVANS, DV ;
LEVITIN, M ;
VASSILIEV, D .
JOURNAL OF FLUID MECHANICS, 1994, 261 :21-31
[8]  
Gazis D.C., 1960, J. Appl. Mech. Trans, V27, P541
[9]  
GLAZMAN IM, 1965, DIRECT METHODS QUALI
[10]  
GOBERT J, 1962, B SOC ROY SCI LIEGE, V31, P182