Entropy rigidity for finite volume strictly convex projective manifolds

被引:0
作者
Bray, Harrison [1 ]
Constantine, David [2 ]
机构
[1] George Mason Univ, Fairfax, VA 22030 USA
[2] Wesleyan Univ, Middletown, CT 06459 USA
关键词
Convex projective manifolds; Hilbert metric; Entropy; Volume; Rigidity; MINIMAL ENTROPY;
D O I
10.1007/s10711-021-00627-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove entropy rigidity for finite volume strictly convex projective manifolds in dimensions >= 3, generalizing the work of [1] to the finite volume setting. The rigidity theorem uses the techniques of Besson, Courtois, and Gallot's entropy rigidity theorem. It implies uniform lower bounds on the volume of any finite volume strictly convex projective manifold in dimensions >= 3.
引用
收藏
页码:543 / 557
页数:15
相关论文
共 31 条
[1]   ENTROPY RIGIDITY AND HILBERT VOLUME [J].
Adeboye, Ilesanmi ;
Bray, Harrison ;
Constantine, David .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (04) :1731-1744
[2]  
[Anonymous], 2014, IRMA LECT MATH THEOR
[3]  
[Anonymous], 1987, Discrete Groups in Geometry and Analysis: Papers in Honor of GD Mostow on His Sixtieth Birthday
[4]  
Ballas SA, 2016, PROPERLY CONVEX BEND
[5]   Entropy Rigidity of Hilbert and Riemannian Metrics [J].
Barthelme, Thomas ;
Marquis, Ludovic ;
Zimmer, Andrew .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (22) :6841-6866
[6]  
Benoist Y, 2006, GEOMETRIAE DEDICATA, V122, P109, DOI 10.1007/s10711-006-9066-z
[7]  
Benoist Y, 2014, J DIFFER GEOM, V98, P1
[8]  
Benzecri Jean Paul., 1960, VARIETES LOCALEMENT, V88, P229
[9]   Minimal entropy and Mostow's rigidity theorems [J].
Besson, G ;
Courtois, G ;
Gallot, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :623-649
[10]   ENTROPIES AND RIGIDITIES OF LOCALLY SYMMETRICAL SPACES WITH STRICTLY NEGATIVE CURVATURE [J].
BESSON, G ;
COURTOIS, G ;
GALLOT, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (05) :731-799