Fingerprinting shock-induced deformations via diffraction

被引:13
作者
Mishra, Avanish [1 ,2 ]
Kunka, Cody [3 ]
Echeverria, Marco J. [1 ]
Dingreville, Remi [3 ]
Dongare, Avinash M. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
基金
美国能源部;
关键词
X-RAY-DIFFRACTION; PHASE-TRANSITION; COMPRESSION; COPPER; SIMULATION; NUCLEATION; SILICON; IRON;
D O I
10.1038/s41598-021-88908-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.
引用
收藏
页数:12
相关论文
共 68 条
  • [1] Dynamic fracture of tantalum under extreme tensile stress
    Albertazzi, Bruno
    Ozaki, Norimasa
    Zhakhovsky, Vasily
    Faenov, Anatoly
    Habara, Hideaki
    Harmand, Marion
    Hartley, Nicholas
    Ilnitsky, Denis
    Inogamov, Nail
    Inubushi, Yuichi
    Ishikawa, Tetsuya
    Katayama, Tetsuo
    Koyama, Takahisa
    Koenig, Michel
    Krygier, Andrew
    Matsuoka, Takeshi
    Matsuyama, Satoshi
    McBride, Emma
    Migdal, Kirill Petrovich
    Morard, Guillaume
    Ohashi, Haruhiko
    Okuchi, Takuo
    Pikuz, Tatiana
    Purevjav, Narangoo
    Sakata, Osami
    Sano, Yasuhisa
    Sato, Tomoko
    Sekine, Toshimori
    Seto, Yusuke
    Takahashi, Kenjiro
    Tanaka, Kazuo
    Tange, Yoshinori
    Togashi, Tadashi
    Tono, Kensuke
    Umeda, Yuhei
    Vinci, Tommaso
    Yabashi, Makina
    Yabuuchi, Toshinori
    Yamauchi, Kazuto
    Yumoto, Hirokatsu
    Kodama, Ryosuke
    [J]. SCIENCE ADVANCES, 2017, 3 (06):
  • [2] Coupling between plasticity and phase transition in shock- and ramp-compressed single-crystal iron
    Amadou, N.
    de Resseguier, T.
    Dragon, A.
    Brambrink, E.
    [J]. PHYSICAL REVIEW B, 2018, 98 (02)
  • [3] Ayachit U., 2015, PARAVIEW GUIDE PARAL
  • [4] Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis
    Balogh, Levente
    Ribarik, Gabor
    Ungar, Tamas
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
  • [5] Ultrahigh strength in nanocrystalline materials under shock loading
    Bringa, EM
    Caro, A
    Wang, YM
    Victoria, M
    McNaney, JM
    Remington, BA
    Smith, RF
    Torralva, BR
    Van Swygenhoven, H
    [J]. SCIENCE, 2005, 309 (5742) : 1838 - 1841
  • [6] Atomistic shock Hugoniot simulation of single-crystal copper
    Bringa, EM
    Cazamias, JU
    Erhart, P
    Stölken, J
    Tanushev, N
    Wirth, BD
    Rudd, RE
    Caturla, MJ
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) : 3793 - 3799
  • [7] Role of nanoscale Cu/Ta interfaces on the shock compression and spall failure of nanocrystalline Cu/Ta systems at the atomic scales
    Chen, Jie
    Tschopp, Mark A.
    Dongare, Avinash M.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 5745 - 5765
  • [8] Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries
    Coleman, S. P.
    Spearot, D. E.
    Capolungo, L.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (05)
  • [9] A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations
    Coleman, Shawn P.
    Sichani, Mehrdad M.
    Spearot, Douglas E.
    [J]. JOM, 2014, 66 (03) : 408 - 416
  • [10] Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined using In Situ Broadband X-Ray Laue Diffraction
    Comley, A. J.
    Maddox, B. R.
    Rudd, R. E.
    Prisbrey, S. T.
    Hawreliak, J. A.
    Orlikowski, D. A.
    Peterson, S. C.
    Satcher, J. H.
    Elsholz, A. J.
    Park, H. -S.
    Remington, B. A.
    Bazin, N.
    Foster, J. M.
    Graham, P.
    Park, N.
    Rosen, P. A.
    Rothman, S. R.
    Higginbotham, A.
    Suggit, M.
    Wark, J. S.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (11)