Preview of machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery

被引:6
|
作者
Callaghan, Sarah [1 ]
机构
[1] Cell Press, 50 Hampshire St, Cambridge, MA USA
来源
PATTERNS | 2021年 / 2卷 / 04期
关键词
D O I
10.1016/j.patter.2021.100239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metal-organic frameworks (MOFs) are a class of chemical compounds used for the storage of gases such as hydrogen and carbon dioxide. They also have potential applications in gas purification, catalysis and as supercapacitors. A database of quantum-chemical properties for over 14,000 MOF structures (the ``QMOF database'') has been created and made available to the community along with code for machine learning and other related resources.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Accelerated Discovery of Metal-Organic Frameworks for CO2 Capture by Artificial Intelligence
    Gulbalkan, Hasan Can
    Aksu, Gokhan Onder
    Ercakir, Goktug
    Keskin, Seda
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 63 (01) : 37 - 48
  • [22] Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning
    Sharma, Abhishek
    Sanvito, Stefano
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [23] Metal-organic frameworks for chemical sensing
    Kreno, Lauren E.
    Van Duyne, Richard P.
    Hupp, Joseph T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [24] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Vandenhaute, Sander
    Cools-Ceuppens, Maarten
    DeKeyser, Simon
    Verstraelen, Toon
    Van Speybroeck, Veronique
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [25] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Sander Vandenhaute
    Maarten Cools-Ceuppens
    Simon DeKeyser
    Toon Verstraelen
    Veronique Van Speybroeck
    npj Computational Materials, 9
  • [26] Layered metal-organic frameworks and metal-organic nanosheets as functional materials
    Sakamoto, Ryota
    Fukui, Naoya
    Maeda, Hiroaki
    Toyoda, Ryojun
    Takaishi, Shinya
    Tanabe, Tappei
    Komeda, Joe
    Amo-Ochoa, Pilar
    Zamora, Felix
    Nishihara, Hiroshi
    COORDINATION CHEMISTRY REVIEWS, 2022, 472
  • [27] Hydrogen physisorption in metal-organic frameworks: concepts and quantum chemical calculations
    Sastre, German
    THEORETICAL CHEMISTRY ACCOUNTS, 2010, 127 (04) : 259 - 270
  • [28] Machine learning: An accelerator for the exploration and application of advanced metal-organic frameworks
    Du, Ruolin
    Xin, Ruiqi
    Wang, Han
    Zhu, Wenkai
    Li, Rui
    Liu, Wei
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [29] Examining proton conductivity of metal-organic frameworks by means of machine learning
    Dudakov, Ivan V.
    Savelev, Sergei A.
    Nevolin, Iurii M.
    Mitrofanov, Artem A.
    Korolev, Vadim V.
    Gorbunova, Yulia G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (14) : 6850 - 6857
  • [30] Machine learning assisted predictions for hydrogen storage in metal-organic frameworks
    Salehi, Khashayar
    Rahmani, Mohammad
    Atashrouz, Saeid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (85) : 33260 - 33275