Application of Fe2V4O13 as a new multi-metal heterogeneous Fenton-like catalyst for the degradation of organic pollutants

被引:41
|
作者
Zhang, Y. Y. [1 ]
Deng, J. H. [1 ]
He, C. [1 ]
Huang, S. S. [1 ]
Tian, S. H. [1 ]
Xiong, Y. [1 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
关键词
Fe2V4O13; Fenton-like; hydrogen peroxide; heterogeneous catalyst; Acid Orange II; HYDROGEN-PEROXIDE; RADICAL GENERATION; H2O2; REACTIONS; LIQUID-PHASE; WASTE-WATER; IRON-OXIDE; ORANGE-II; OXIDATION; ACID; SYSTEM;
D O I
10.1080/09593330903397755
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Iron tetrapolyvanadate (Fe2V4O13) was prepared and characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) measurement and scanning electron microscopy (SEM). It was found that Fe2V4O13 could effectively catalyse H2O2 to generate active OH; therefore, Fe2V4O13 was employed as a new two-metal heterogeneous Fenton-like catalyst. The decomposition of H2O2 and the degradation of Acid Orange II catalysed by Fe2V4O13 could be well described with a simple pseudo-first-order rate equation between the reaction temperatures of 15 degrees C and 30 degrees C. It was inferred from the reaction activation energy data that the generation of the hydroxyl radical was a control step in a series of reactions for the oxidation of Acid Orange II in the presence of H2O2 and Fe2V4O13. The catalytic activity of Fe2V4O13 towards degradation of Acid Orange II was not only much higher than that of alpha-Fe2O3, V2O5 and FeVO4 but also than that of their mixtures with an identical ratio of Fe and V, such as 2FeVO(4) + V2O5 and Fe2O3 + 2V(2)O(5). The high catalytic activity possibly involved a special two-way Fenton-like mechanism and the synergistic activation of Fe(III) and V(V) in Fe2V4O13 towards H2O2.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 50 条
  • [21] Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe0-Fe2O3 nanoparticles embedded ordered mesoporous carbon composite catalyst
    Wang, Jing
    Liu, Chao
    Qi, Junwen
    Li, Jiansheng
    Sun, Xiuyun
    Shen, Jinyou
    Han, Weiqing
    Wang, Lianjun
    ENVIRONMENTAL POLLUTION, 2018, 243 : 1068 - 1077
  • [22] Catalytic Degradation of Phenol and p-Nitrophenol Using Fe3O4/MWCNT Nanocomposites as Heterogeneous Fenton-Like Catalyst
    Tian, Xiaojun
    Liu, Yunfang
    Chi, Weidong
    Wang, Yu
    Yue, Xiuzheng
    Huang, Qigu
    Yu, Changyuan
    WATER AIR AND SOIL POLLUTION, 2017, 228 (08)
  • [23] S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol
    Guo, Liqin
    Chen, Feng
    Fan, Xiangqun
    Cai, Wandong
    Zhang, Jinlong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 96 (1-2) : 162 - 168
  • [24] Optimization of heterogeneous Fenton-like process with Cu-Fe@CTS as catalyst for degradation of organic matter in leachate concentrate and degradation mechanism research
    Guo, Chengrui
    Qin, Xia
    Guo, Rui
    Lv, Yue
    Li, Mingran
    Wang, Ziyuan
    Li, Tinghui
    WASTE MANAGEMENT, 2021, 134 : 220 - 230
  • [25] Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2
    Wu, Jinhua
    Lin, Guanghui
    Li, Ping
    Yin, Weizhao
    Wang, Xiangde
    Yang, Bo
    WATER SCIENCE AND TECHNOLOGY, 2013, 67 (03) : 572 - 578
  • [26] Yolk-shell Co3O4@Fe3O4/C Nanocomposites as a Heterogeneous Fenton-like Catalyst for Organic Dye Removal
    Yang, Ruixia
    Peng, Qiaohong
    Ahmed, Adeel
    Gao, Fengyuan
    Yu, Bing
    Shen, Youqing
    Cong, Hailin
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (13)
  • [27] An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction
    Gao, Pan
    Song, Yuan
    Hao, Mengjie
    Zhu, Anna
    Yang, Hongwei
    Yang, Shaoxia
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 201 : 238 - 243
  • [28] Degradation of Acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst
    Tian, S. H.
    Tu, Y. T.
    Chen, D. S.
    Chen, X.
    Xiong, Y.
    CHEMICAL ENGINEERING JOURNAL, 2011, 169 (1-3) : 31 - 37
  • [29] Degradation of sulfamethazine antibiotics in Fenton-like system using Fe3O4 magnetic nanoparticles as catalyst
    Bai, Zhiyong
    Yang, Qi
    Wang, Jianlong
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (06) : 1743 - 1753
  • [30] Ofloxacin degradation by Fe3O4-CeO2/AC Fenton-like system: Optimization, kinetics, and degradation pathways
    Liu, Juan
    Wu, Xia
    Li, Jingjing
    Zhang, Conglu
    Hu, Qi
    Hou, Xiaohong
    MOLECULAR CATALYSIS, 2019, 465 : 61 - 67