Differentiation Stage-Specific Requirement in Hypoxia-Inducible Factor-1α-Regulated Glycolytic Pathway during Murine B Cell Development in Bone Marrow

被引:74
作者
Kojima, Hidefumi [1 ]
Kobayashi, Ayano [1 ]
Sakurai, Daisuke [1 ]
Kanno, Yumiko [1 ]
Hase, Hidenori [1 ]
Takahashi, Riichi
Totsuka, Yoshikazu
Semenza, Gregg L. [2 ]
Sitkovsky, Michail V. [3 ]
Kobata, Tetsuji [1 ]
机构
[1] Dokkyo Med Univ, Dept Immunol, Sch Med, Mibu, Tochigi 3210293, Japan
[2] Johns Hopkins Univ, Sch Med, Inst Cell Engn, Baltimore, MD 21205 USA
[3] Northeastern Univ, New England Inflammat & Tissue Protect Inst, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
GROWTH-FACTOR-I; FACTOR; 1-ALPHA; PRO-B; LYMPHOCYTE DEVELOPMENT; MOLECULAR-CLONING; O-2; HOMEOSTASIS; GLUCOSE-UPTAKE; PFKFB3; GENE; RAT-BRAIN; EXPRESSION;
D O I
10.4049/jimmunol.0800167
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Hypoxia-inducible factor (HIF)-1 alpha plays a central role in oxygen homeostasis and energy supply by glycolysis in many cell types. We previously reported that an HIF-1 alpha gene deficiency caused abnormal B cell development and autoimmunity. In this study we show that HIF-1 alpha-enabled glycolysis during B cell development is required in a developmental stage-specific manner. Supporting this conclusion are observations that the glycolytic pathway in HIF-1 alpha-deficient B220(+) bone marrow cells is much less functionally effective than in wild-type control cells. The expression of genes encoding the glucose transporters and the key glycolytic enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bishosphatase 3, was greatly reduced in HIF-1 alpha-deficient cells. The compensatory adaptation to the defect of glycolysis was reflected in higher levels of expression of respiratory chain-related genes and TCA cycle-related genes in HIF-1 alpha-deficient cells than in wild-type cells. In agreement with these findings, HIF-1 alpha-deficient cells used pyruvate more efficiently than wild-type cells. The key role of HIF-1 alpha-enabled glycolysis in bone marrow B cells was also demonstrated by glucose deprivation during in vitro bone marrow cell culture and by using a glycolysis inhibitor in the bone marrow cell culture. Taken together, these findings indicate that glucose dependency differs at different B cell developmental stages and that HIF-1 alpha plays an important role in B cell development. The Journal of Immunology, 2010, 184: 154-163.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 55 条
[21]   Requirements for T lymphocyte migration in explanted lymph nodes [J].
Huang, Julie H. ;
Cardenas-Navia, L. Isabel ;
Caldwell, Charles C. ;
Plumb, Troy J. ;
Radu, Caius G. ;
Rocha, Paulo N. ;
Wilder, Tuere ;
Bromberg, Jonathan S. ;
Cronstein, Bruce N. ;
Sitkovsky, Michail ;
Dewhirst, Mark W. ;
Dustin, Michael L. .
JOURNAL OF IMMUNOLOGY, 2007, 178 (12) :7747-7755
[22]   Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α [J].
Iyer, NV ;
Kotch, LE ;
Agani, F ;
Leung, SW ;
Laughner, E ;
Wenger, RH ;
Gassmann, M ;
Gearhart, JD ;
Lawler, AM ;
Yu, AY ;
Semenza, GL .
GENES & DEVELOPMENT, 1998, 12 (02) :149-162
[23]   Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway [J].
Kallio, PJ ;
Wilson, WJ ;
O'Brien, S ;
Makino, Y ;
Poellinger, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (10) :6519-6525
[24]   Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1α-deficient chimeric mice [J].
Kojima, H ;
Gu, H ;
Nomura, S ;
Caldwell, CC ;
Kobata, T ;
Carmeliet, P ;
Semenza, GL ;
Sitkovsky, MV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2170-2174
[25]   Cutting edge:: Hypoxia-inducible factor 1α and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes [J].
Lukashev, Dmitriy ;
Klebanov, Boris ;
Kojima, Hidefumi ;
Grinberg, Alex ;
Ohta, Akiko ;
Berenfeld, Ludmilla ;
Wenger, Roland H. ;
Ohta, Akio ;
Sitkovsky, Michail .
JOURNAL OF IMMUNOLOGY, 2006, 177 (08) :4962-4965
[26]   The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis [J].
Lum, Julian J. ;
Bui, Thi ;
Gruber, Michaela ;
Gordan, John D. ;
DeBerardinis, Ralph J. ;
Covello, Kelly L. ;
Simon, M. Celeste ;
Thompson, Craig B. .
GENES & DEVELOPMENT, 2007, 21 (09) :1037-1049
[27]   Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3) [J].
Manzano, A ;
Rosa, JL ;
Ventura, F ;
Pérez, JX ;
Nadal, M ;
Estivill, X ;
Ambrosio, S ;
Gil, J ;
Bartrons, R .
CYTOGENETICS AND CELL GENETICS, 1998, 83 (3-4) :214-217
[28]   Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential [J].
Martin, CH ;
Aifantis, I ;
Scimone, ML ;
von Andrian, UH ;
Reizis, B ;
von Boehmer, H ;
Gounari, F .
NATURE IMMUNOLOGY, 2003, 4 (09) :866-873
[29]   Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene -: Its possible role in the Warburg effect [J].
Minchenko, A ;
Leshchinsky, I ;
Opentanova, I ;
Sang, NL ;
Srinivas, V ;
Armstead, V ;
Caro, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (08) :6183-6187
[30]  
Nutt SL, 1999, NATURE, V401, P556, DOI 10.1038/44076