Feasibility Analysis of Engine Control Tasks under EDF Scheduling

被引:11
作者
Biondi, Alessandro [1 ]
Buttazzo, Giorgio [1 ]
Simoncelli, Stefano [1 ]
机构
[1] Scuola Super Sant Anna, Pisa, Italy
来源
PROCEEDINGS OF THE 2015 27TH EUROMICRO CONFERENCE ON REAL-TIME SYSTEMS (ECRTS 2015) | 2015年
关键词
D O I
10.1109/ECRTS.2015.20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Engine control applications include software tasks that are triggered at predetermined angular values of the crankshaft, thus generating a computational workload that varies with the engine speed. To avoid overloads at high rotation speeds, these tasks are implemented to self adapt and reduce their computational demand by switching mode at given rotation speeds. For this reason, they are referred to as adaptive variable rate (AVR) tasks. Although a few works have been proposed in the literature to model and analyze the schedulability of such a peculiar type of tasks, an exact analysis of engine control applications has been derived only for fixed priority systems, under a set of simplifying assumptions. The major problem of scheduling AVR tasks with fixed priorities, however, is that, due to engine accelerations, the interarrival period of an AVR task is subject to large variations, therefore there will be several speeds at which any fixed priority assignment is far from being optimal, significantly penalizing the schedulability of the system. This paper proposes for the first time an exact feasibility test under the Earliest Deadline First scheduling algorithm for tasks sets including regular periodic tasks and AVR tasks triggered by a common rotation source. In addition, a set of simulation results are reported to evaluate the schedulability gain achieved in this context by EDF over fixed priority scheduling.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 18 条
  • [1] Baruah S., 1990, J REAL TIME SYSTEMS, V2
  • [2] Measuring the performance of schedulability tests
    Bini, E
    Buttazzo, GC
    [J]. REAL-TIME SYSTEMS, 2005, 30 (1-2) : 129 - 153
  • [3] Biondi A., 2015, P 6 INT C CYB PHYS S
  • [4] Biondi A., 2015, P INT C DES AUT TEST
  • [5] Biondi A, 2014, P 26 EUR C REAL TIM
  • [6] Rate Monotonic vs. EDF: Judgment day
    Buttazzo, GC
    [J]. REAL-TIME SYSTEMS, 2005, 29 (01) : 5 - 26
  • [7] Buttazzo GC, 2014, DES AUT TEST EUROPE
  • [8] Buttle D, 2012, 24 EUR C REAL TIM SY
  • [9] Davis R. I., 2014, P 20 IEEE REAL TIM E
  • [10] Diederichs C., 2008, P DES AUT TEST C EUR