The multiscale coarse-graining method: Assessing its accuracy and introducing density dependent coarse-grain potentials

被引:84
作者
Izvekov, Sergei [1 ]
Chung, Peter W. [1 ]
Rice, Betsy M. [1 ]
机构
[1] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA
关键词
compressibility; crystal structure; free energy; liquid structure; liquid theory; organic compounds; MOLECULAR-DYNAMICS SIMULATIONS; RADIAL-DISTRIBUTION FUNCTIONS; SHOCKED LIQUID NITROMETHANE; EQUATION-OF-STATE; SOLID NITROMETHANE; FORCE-FIELD; ATOMISTIC SIMULATIONS; BIOMOLECULAR SYSTEMS; MEMBRANE-PROTEINS; FREE-ENERGY;
D O I
10.1063/1.3464776
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ability of particle-based coarse-grain potentials, derived using the recently proposed multiscale coarse-graining (MS-CG) methodology [S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005); J. Chem. Phys. 123, 134105 (2005)] to reconstruct atomistic free-energy surfaces in coarse-grain coordinates is discussed. The MS-CG method is based on force-matching generalized forces associated with the coarse-grain coordinates. In this work, we show that the MS-CG method recovers only part of the atomistic free-energy landscape in the coarse-grain coordinates (termed the potential of mean force contribution). The portion of the atomistic free-energy landscape that is left out in the MS-CG procedure contributes to a pressure difference between atomistic and coarse-grain ensembles. Employing one- and two-site coarse-graining of nitromethane as worked examples, we discuss the virial and compressibility constraints to incorporate a pressure correction interaction into the MS-CG potentials and improve performance at different densities. The nature of the pressure correction interaction is elucidated and compared with those used in structure-based coarse-graining. As pairwise approximations to the atomistic free-energy, the MS-CG potentials naturally depend on the variables describing a thermodynamic state, such as temperature and density. Such dependencies limit state-point transferability. For nitromethane, the one- and two-site MS-CG potentials appear to be transferable across a broad range of temperatures. In particular, the two-site models, which are matched to low and ambient temperature liquid states, perform well in simulations of the ambient crystal structure. In contrast, the transferability of the MS-CG models of nitromethane across different densities is found to be problematic. To achieve better state-point transferability, density dependent MS-CG potentials are introduced and their performance is examined in simulations of nitromethane under various thermodynamic conditions, including shocked states. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464776]
引用
收藏
页数:16
相关论文
共 87 条
[1]   Molecular dynamics study of the melting of nitromethane [J].
Agrawal, PM ;
Rice, BM ;
Thompson, DL .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (18) :9617-9627
[2]   Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains [J].
Allen, Erik C. ;
Rutledge, Gregory C. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (03)
[3]  
Allen M. P., 1987, COMPUTER SIMULATION
[4]   Mesoscale model of polymer melt structure: Self-consistent mapping of molecular correlations to coarse-grained potentials [J].
Ashbaugh, HS ;
Patel, HA ;
Kumar, SK ;
Garde, S .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (10)
[5]   Multiscale simulation of membranes and membrane proteins: Connecting molecular interactions to mesoscopic behavior [J].
Ayton, Gary S. ;
Izvekov, Sergei ;
Noid, W. G. ;
Voth, Gregory A. .
COMPUTATIONAL MODELING OF MEMBRANE BILAYERS, 2008, 60 :181-225
[6]   Many-body interactions and correlations in coarse-grained descriptions of polymer solutions [J].
Bolhuis, PG ;
Louis, AA ;
Hansen, JP .
PHYSICAL REVIEW E, 2001, 64 (02) :12
[7]   Implicit solvent simulation models for biomembranes [J].
Brannigan, G ;
Lin, LCL ;
Brown, FLH .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2006, 35 (02) :104-124
[8]   Coarse-grained sequences for protein folding and design [J].
Brown, S ;
Fawzi, NJ ;
Head-Gordon, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10712-10717
[9]   Transferability of coarse-grained force fields:: The polymer case [J].
Carbone, Paola ;
Varzaneh, Hossein Ali Karimi ;
Chen, Xiaoyu ;
Mueller-Plathe, Florian .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (06)
[10]   Emerging methods for multiscale simulation of biomolecular systems [J].
Chu, J. -W. ;
Ayton, G. S. ;
Izvekov, S. ;
Voth, G. A. .
MOLECULAR PHYSICS, 2007, 105 (2-3) :167-175