A Left Ventricular Segmentation Method on 3D Echocardiography using Deep Learning and Snake

被引:0
作者
Dong, Suyu [1 ]
Luo, Gongning [1 ]
Sun, Guanxiong
Wang, Kuanquan [1 ]
Zhang, Henggui [1 ,2 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Univ Manchester, Room 3-07 Schuster Bldg, Manchester M13 9PL, Lancs, England
来源
2016 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 43 | 2016年 / 43卷
基金
中国国家自然科学基金;
关键词
TRACKING; MODELS;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Segmentation of left ventricular (LV) endocardium from 3D echocardiography is important for clinical diagnosis because it not only can provide some clinical indices (e.g. ventricular volume and ejection fraction) but also can be used for the analysis of anatomic structure of ventricle. In this work, we proposed a new full-automatic method, combining the deep learning and deformable model, for the segmentation of LV endocardium. We trained convolutional neural networks to generate a binary cuboid to locate the region of interest (ROI). And then, using ROI as the input, we trained stacked autoencoder to infer the LV initial shape. At last, we adopted snake model initiated by inferred shape to segment the LV endocardium. In the experiments, we used 3DE data, from CETUS challenge 2014 for training and testing by segmentation accuracy and clinical indices. The results demonstrated the proposed method is accuracy and efficiency respect to expert's measurements.
引用
收藏
页码:473 / 476
页数:4
相关论文
共 15 条
[1]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[2]  
Bengio L. P., 2007, ADV NEURAL INFORM PR, P19
[3]  
Bernard O., 2015, IEEE T MED IMAGING
[4]   Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data [J].
Carneiro, Gustavo ;
Nascimento, Jacinto C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2592-2607
[5]  
Carneiro N. J. C., 2010, COMP VIS PATT REC CV
[6]   Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set [J].
Dietenbeck, T. ;
Barbosa, D. ;
Alessandrini, M. ;
Jasaityte, R. ;
Robesyn, V. ;
D'hooge, J. ;
Friboulet, D. ;
Bernard, O. .
MEDICAL IMAGE ANALYSIS, 2014, 18 (03) :500-514
[7]  
Dong SY, 2016, COMPUTING CARDIOLOGY, V43
[8]  
Georgescu L. X., 2008, 2008 5 IEEE INT S BI
[9]   Constrained active appearance models for segmentation of triplane echocardiograms [J].
Hansegard, Joger ;
Urheim, Stig ;
Lunde, Ketil ;
Rabben, Stein Inge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (10) :1391-1400
[10]  
Hansegard O. F., 2007, INT C COMP AN IM PAT