Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice

被引:37
|
作者
Keyhani-Nejad, Farnaz [1 ,2 ,3 ]
Irmler, Martin [4 ,5 ]
Isken, Frank [1 ,2 ]
Wirth, Eva K. [6 ]
Beckers, Johannes [3 ,4 ,5 ,7 ]
Birkenfeld, Andreas L. [2 ,8 ,9 ]
Pfeiffer, Andreas F. H. [1 ,2 ,3 ]
机构
[1] German Inst Human Nutr, Dept Clin Nutr, D-14558 Nuthetal, Germany
[2] Charite, Dept Endocrinol Diabet & Nutr, D-13353 Berlin, Germany
[3] German Ctr Diabet Res DZD, Munich, Germany
[4] Helmholtz Zentrum Munchen GmbH, Inst Expt Genet, Neuherberg, Germany
[5] Helmholtz Zentrum Munchen GmbH, German Mouse Clin, Neuherberg, Germany
[6] Charite, Inst Expt Endochrinol, D-13353 Berlin, Germany
[7] Tech Univ Munich, Dept Expt Genet, Freising Weihenstephan, Germany
[8] Dresden Univ, Sch Med, Dept Med 3, Dresden, Germany
[9] Dresden Univ, Sch Med, Paul Langerhans Inst, Dresden, Germany
关键词
Fatty liver; GIP response; Palatinose; DIET-INDUCED OBESITY; LIPID-METABOLISM; DISEASE; GIP; PALATINOSE; RATS; ISOMALTULOSE; RECEPTOR; STEATOHEPATITIS; ADIPONECTIN;
D O I
10.1007/s00125-014-3423-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
High intake of carbohydrates, particularly sucrose, in western societies is associated with the development of non-alcoholic fatty liver (NAFL) and diabetes mellitus. It is unclear whether this is related primarily to the carbohydrate quantity or to the hormonal responses, particularly glucose-dependent insulinotropic polypeptide (GIP), which is released in the proximal intestine. Therefore, we investigated the role of GIP by comparing two glucose-fructose dimers, sucrose and Palatinose (isomaltulose), resorbed proximally or distally. The glycaemic and incretin responses to sucrose and Palatinose were studied by oral gavage and meal tests. We then analysed phenotypic and metabolic diet-induced changes in C57Bl/6J mice exposed to isoenergetic diets differing in carbohydrate type. Studies were repeated in GIP receptor knockout (Gipr (-/-)) mice and their wild-type littermates. Compared with sucrose, Palatinose intake resulted in slower glucose absorption and reduced postprandial insulin and GIP levels. After 22 weeks, Palatinose feeding prevented hepatic steatosis (48.5%) compared with sucrose and improved glucose tolerance, without differences in body composition and food intake. Ablation of GIP signalling in Gipr (-/-) mice completely prevented the deleterious metabolic effects of sucrose feeding. Furthermore, our microarray analysis indicated that sucrose increased 2.3-fold the hepatic expression of Socs2, which is involved in the growth hormone signalling pathway and participates in the development of NAFL. Our results suggest that the site of glucose absorption and the GIP response determine liver fat accumulation and insulin resistance. GIP may play a role in sucrose induced fatty liver by regulating the expression of Socs2.
引用
收藏
页码:374 / 383
页数:10
相关论文
共 50 条
  • [1] Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice
    Farnaz Keyhani-Nejad
    Martin Irmler
    Frank Isken
    Eva K. Wirth
    Johannes Beckers
    Andreas L. Birkenfeld
    Andreas F. H. Pfeiffer
    Diabetologia, 2015, 58 : 374 - 383
  • [2] Deficiency of glucose-dependent insulinotropic polypeptide (GIP) secretion alleviates increasing obesity and insulin resistance with aging
    Kanemaru, Y.
    Harada, N.
    Kuwahara, S. S.
    Yamane, S.
    Ikeguchi, E.
    Murata, Y.
    Kyo, S.
    Inagaki, N.
    DIABETOLOGIA, 2019, 62 : S250 - S250
  • [3] DISPARITY BETWEEN GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE AND INSULIN RESPONSES IN OBESE MAN
    SARSON, DL
    KOPELMAN, PG
    BESTERMAN, HS
    PILKINGTON, TRE
    BLOOM, SR
    DIABETOLOGIA, 1983, 25 (05) : 386 - 391
  • [4] Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice
    Shimazu-Kuwahara, Satoko
    Harada, Norio
    Yamane, Shunsuke
    Joo, Erina
    Sankoda, Akiko
    Kieffer, Timothy J.
    Inagaki, Nobuya
    MOLECULAR METABOLISM, 2017, 6 (03): : 288 - 294
  • [5] Glucose-dependent insulinotropic polypeptide monoclonal antibodies prevent and treat obesity in wild-type and hyperphagic mice
    Wolfe, M. Michael
    Apovian, Caroline M. M.
    Boylan, Michael O. O.
    OBESITY, 2023, 31 (06) : 1499 - 1504
  • [6] FEEDBACK-REGULATION OF GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE BY INSULIN
    CHEUNG, A
    PEDERSON, RA
    BRYERASH, M
    CLINICAL RESEARCH, 1994, 42 (01): : A20 - A20
  • [7] GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE AUGMENTATION OF INSULIN - PHYSIOLOGY OR PHARMACOLOGY
    SARSON, DL
    WOOD, SM
    KANSAL, PC
    BLOOM, SR
    DIABETES, 1984, 33 (04) : 389 - 393
  • [8] Glucose-Dependent Insulinotropic Polypeptide A Bifunctional Glucose-Dependent Regulator of Glucagon and Insulin Secretion in Humans
    Christensen, Mikkel
    Vedtofte, Louise
    Holst, Jens J.
    Vilsboll, Tina
    Knop, Filip K.
    DIABETES, 2011, 60 (12) : 3103 - 3109
  • [9] Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in man
    Christensen, M.
    Vedtofte, L.
    Vilsboll, T.
    Holst, J. J.
    Knop, F. K.
    DIABETOLOGIA, 2011, 54 : S60 - S60
  • [10] The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity
    Kelly, Karen R.
    Brooks, Latina M.
    Solomon, Thomas P. J.
    Kashyap, Sangeeta R.
    O'Leary, Valerie B.
    Kirwan, John P.
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2009, 296 (06): : E1269 - E1274