Changes in human footprint drive changes in species extinction risk

被引:208
作者
Di Marco, Moreno [1 ,2 ]
Venter, Oscar [3 ]
Possingham, Hugh P. [1 ,4 ]
Watson, James E. M. [1 ,5 ]
机构
[1] Univ Queensland, Ctr Biodivers & Conservat Sci, Brisbane, Qld 4072, Australia
[2] CSIRO Land & Water, EcoSci Precinct, 41 Boggo Rd, Dutton Pk, Qld 4102, Australia
[3] Univ Northern British Columbia, Nat Resource & Environm Studies Inst, 3333 Univ Way, Prince George, BC V2N 4Z9, Canada
[4] Nature Conservancy, 4245 North Fairfax Dr,Suite 100, Arlington, VA 22203 USA
[5] Wildlife Conservat Soc, Global Conservat Program, 2300 Southern Blvd, Bronx, NY 10460 USA
关键词
CONSERVATION; IMPACT; BIODIVERSITY; DECLINE; MODELS; WORLDS; MAP;
D O I
10.1038/s41467-018-07049-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting how species respond to human pressure is essential to anticipate their decline and identify appropriate conservation strategies. Both human pressure and extinction risk change over time, but their inter-relationship is rarely considered in extinction risk modelling. Here we measure the relationship between the change in terrestrial human footprint (HFP)-representing cumulative human pressure on the environment-and the change in extinction risk of the world's terrestrial mammals. We find the values of HFP across space, and its change over time, are significantly correlated to trends in species extinction risk, with higher predictive importance than environmental or life-history variables. The anthropogenic conversion of areas with low pressure values ( HFP < 3 out of 50) is the most significant predictor of change in extinction risk, but there are biogeographical variations. Our framework, calibrated on past extinction risk trends, can be used to predict the impact of increasing human pressure on biodiversity.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) [J].
Allouche, Omri ;
Tsoar, Asaf ;
Kadmon, Ronen .
JOURNAL OF APPLIED ECOLOGY, 2006, 43 (06) :1223-1232
[2]  
[Anonymous], 2013, NAT CONSERV-CRACOW, DOI DOI 10.3897/NATURECONSERVATION.5.5734
[3]  
[Anonymous], 2016, GEOGRAPHIC RESOURCES
[4]  
[Anonymous], 2005, Genus
[5]   Biases, gaps, and opportunities in mammalian extinction risk research [J].
Arregoitia, Luis D. Verde .
MAMMAL REVIEW, 2016, 46 (01) :17-29
[6]   Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk [J].
Arregoitia, Luis Darcy Verde ;
Blomberg, Simon P. ;
Fisher, Diana O. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1765)
[7]   Global forest loss disproportionately erodes biodiversity in intact landscapes [J].
Betts, Matthew G. ;
Wolf, Christopher ;
Ripple, William J. ;
Phalan, Ben ;
Millers, Kimberley A. ;
Duarte, Adam ;
Butchart, Stuart H. M. ;
Levi, Taal .
NATURE, 2017, 547 (7664) :441-+
[8]   Cost-effective assessment of extinction risk with limited information [J].
Bland, Lucie M. ;
Orme, C. David L. ;
Bielby, Jon ;
Collen, Ben ;
Nicholson, Emily ;
McCarthy, Michael A. .
JOURNAL OF APPLIED ECOLOGY, 2015, 52 (04) :861-870
[9]   Predicting the conservation status of data-deficient species [J].
Bland, Lucie M. ;
Collen, Ben ;
Orme, C. David L. ;
Bielby, Jon .
CONSERVATION BIOLOGY, 2015, 29 (01) :250-259
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32