Reflecting the Pascal matrix about its main antidiagonal

被引:4
作者
Abrams, L [1 ]
Fishkind, DE
Valdes-Leon, S
机构
[1] Rutgers State Univ, Piscataway, NJ 08855 USA
[2] Univ So Maine, Portland, ME 04103 USA
关键词
Pascal matrix; Fibonacci diagonal; modular arithmetic;
D O I
10.1080/03081080008818638
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B denote either of two varieties of order n Pascal matrix, i.e., one whose entries are the binomial coefficients. Let B-R denote the reflection of B about its main antidiagonal. The matrix B is always invertible module n; our main result asserts that B-1 = B-R mod n if and only if n is prime. In the course of motivating this result we encounter and highlight some of the difficulties with the matrix exponential under modular arithmetic. We then use our main result to extend the "Fibonacci diagonal" property of Pascal matrices.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 8 条
[1]  
BRAWER R, 1992, LINEAR ALGEBRA APPL, V174, P13, DOI 10.1016/0024-3795(92)90056-G
[2]   PASCAL MATRICES [J].
CALL, GS ;
VELLEMAN, DJ .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (04) :372-376
[3]  
HARDY GH, 1979, INTRO THEORY NUMBERS, P68
[4]  
HORN RA, 1991, TOPICS MATRIX ANAL, P435
[5]  
Lawden G.H., 1972, MATH GAZ, V56, P325, DOI 10.2307/3617843
[6]   Pascal matrices and stirling numbers [J].
Maltais, P ;
Gulliver, TA .
APPLIED MATHEMATICS LETTERS, 1998, 11 (02) :7-11
[7]  
SIMMONS G, 1999, AM MATH MONTHLY, V106, P470
[8]  
VARNADORE J, 1991, MATH TEACHER, V84, P314