Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis

被引:50
|
作者
Nessel, Mark P. [1 ]
Konnovitch, Theresa [1 ,2 ]
Romero, Gustavo Q. [3 ]
Gonzalez, Angelica L. [1 ,4 ]
机构
[1] Rutgers State Univ, Ctr Computat & Integrat Biol, 201 S Broadway, Camden, NJ 08103 USA
[2] La Salle Univ, Dept Biol, 1900 W Olney Ave, Philadelphia, PA 19141 USA
[3] Univ Estadual Campinas, Inst Biol, Dept Anim Biol, CP 6109, BR-13083862 Campinas, SP, Brazil
[4] Rutgers State Univ, Dept Biol, Sci Bldg,315 Penn St, Camden, NJ 08102 USA
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
abundance; aquatic; community structure; diversity; fertilization; insects; nutrients; terrestrial; SOIL NEMATODE COMMUNITY; LONG-TERM FERTILIZATION; NUTRIENT CO-LIMITATION; LAKE FOOD WEBS; FRESH-WATER; BOTTOM-UP; TOP-DOWN; ECOLOGICAL STOICHIOMETRY; ECOSYSTEM SERVICES; ORGANIC MANURE;
D O I
10.1111/brv.12771
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Human-driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem-level processes. Here, we present a meta-analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human-driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.
引用
收藏
页码:2617 / 2637
页数:21
相关论文
共 50 条
  • [31] Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis
    Li, Yong
    Niu, Shuli
    Yu, Guirui
    GLOBAL CHANGE BIOLOGY, 2016, 22 (02) : 934 - 943
  • [32] Global meta-analysis reveals that invertebrate diversity is higher in permanent than in temporary lentic water bodies
    Anton-Pardo, Maria
    Ortega, Jean C. G.
    Melo, Adriano S.
    Bini, Luis M.
    FRESHWATER BIOLOGY, 2019, 64 (12) : 2234 - 2246
  • [33] Leaf Nitrogen and Phosphorus Stoichiometry of Chinese fir Plantations across China: A Meta-Analysis
    Tong, Ran
    Zhou, Benzhi
    Jiang, Lina
    Ge, Xiaogai
    Cao, Yonghui
    Yang, Zhenya
    FORESTS, 2019, 10 (11):
  • [34] Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis
    Midolo, Gabriele
    Alkemade, Rob
    Schipper, Aafke M.
    Benitez-Lopez, Ana
    Perring, Michael P.
    De Vries, Wim
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2019, 28 (03): : 398 - 413
  • [35] Soil nitrogen cycling gene abundances in response to organic amendments: A meta-analysis
    Yang, Yajun
    Liu, Hexiang
    Chen, Yi
    Wu, Lijuan
    Huang, Guan
    Lv, Jialong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 921
  • [36] The impacts of nitrogen addition on upland soil methane uptake: A global meta-analysis
    Chen, Jianyu
    Feng, Maoyuan
    Cui, Yongxing
    Liu, Gang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 795 (795)
  • [37] Nutrient addition and warming alter the soil phosphorus cycle in grasslands: A global meta-analysis
    Hu, Wanjia
    Tan, Junren
    Shi, Xinrong
    Lock, Thomas Ryan
    Kallenbach, Robert L.
    Yuan, Zhiyou
    JOURNAL OF SOILS AND SEDIMENTS, 2022, 22 (10) : 2608 - 2619
  • [38] Effective and feasible mechanisms to support native invertebrate pollinators in agricultural landscapes: A meta-analysis
    Aslan, Clare E.
    Haubensak, Karen A.
    Grady, Kevin C.
    ECOSPHERE, 2022, 13 (03):
  • [39] The impact of global change factors on the functional genes of soil nitrogen and methane cycles in grassland ecosystems: a meta-analysis
    Liu, Yuhan
    Liu, Yinghui
    Zhang, Jiaqi
    Dong, Jingyi
    Ren, Siyu
    OECOLOGIA, 2025, 207 (01)
  • [40] Negative effects of urbanization on plants: A global meta-analysis
    Hou, Yuchen
    Li, Junsheng
    Li, Guo
    Qi, Wei
    ECOLOGY AND EVOLUTION, 2023, 13 (04):