Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI

被引:1
|
作者
Rodrigues, Joany [1 ]
Pinheiro, Gustavo [1 ]
Carmo, Diedre [1 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, Med Image Comp Lab, Campinas, SP, Brazil
来源
17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS | 2021年 / 12088卷
基金
巴西圣保罗研究基金会;
关键词
Segmentation; corpus callosum; deep learning; U-Net; magnetic resonance; diffusion tensor imaging; ANATOMICAL STRUCTURES; ATROPHY;
D O I
10.1117/12.2606233
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Corpus callosum (CC) segmentation is an important first step of MRI-based analysis, however most available automated methods and tools perform its segmentation on the midsagittal slice only. Additionally, the few volumetric CC segmentation methods available work on T1-weighted images, what requires an additional step of registering the T1 segmentation mask over diffusion tensor images (DTI) when conducting any DTI-based analysis. This work presents a volumetric segmentation method of the corpus callosum using a modified U-Net on diffusion tensor data, such as Fractional Anisotropy (FA), Mean Difusivity (MD) and Mode of Anisotropy (MO). The model was trained on 70 DTI acquisitions and tested on a dataset composed of 14 acquisitions with manual volumetric segmentation. Results indicate that using multiple DTI maps as input channels is better than using a single one. The best model obtained a mean dice of 83,29% on the test dataset, surpassing the performance of available softwares.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Deep learning-integrated MRI brain tumor analysis: feature extraction, segmentation, and Survival Prediction using Replicator and volumetric networks
    Rastogi, Deependra
    Johri, Prashant
    Donelli, Massimo
    Kadry, Seifedine
    Khan, Arfat Ahmad
    Espa, Giuseppe
    Feraco, Paola
    Kim, Jungeun
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [42] Active Appearance Model and Deep Learning for More Accurate Prostate Segmentation on MRI
    Cheng, Ruida
    Roth, Holger R.
    Lu, Le
    Wang, Shijun
    Turkbey, Baris
    Gandler, William
    McCreedy, Evan S.
    Agarwal, Harsh K.
    Choyke, Peter
    Summers, Ronald M.
    McAuliffe, Matthew J.
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [43] Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound
    Milletari, Fausto
    Ahmadi, Seyed-Ahmad
    Kroll, Christine
    Plate, Annika
    Rozanski, Verena
    Maiostre, Juliana
    Levin, Johannes
    Dietrich, Olaf
    Ertl-Wagner, Birgit
    Boetzel, Kai
    Navab, Nassir
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 164 : 92 - 102
  • [44] Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI
    Dogru, Dilan
    Ozdemir, Mehmet Akif
    Guren, Onan
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1392 - 1396
  • [45] Deep learning techniques for the fully automated detection and segmentation of brain MRI
    Tamer, Ahmed
    Youssef, Ahmed
    Ibrahim, Mohammed
    Abd-El Aziz, Mostafa
    Hesham, Youssef
    Mohammed, Zeyad
    Eissa, M. M.
    Ahmed, Soha
    Khoriba, Ghada
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 310 - 315
  • [46] A Study on Heart Segmentation Using Deep Learning Algorithm for MRI Scans
    Ibrahim, Shakeel Muhammad
    Ibrahim, Muhammad Sohail
    Usman, Muhammad
    Naseem, Imran
    Moinuddin, Muhammad
    2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
  • [47] MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice
    Holbrook, M. D.
    Blocker, S. J.
    Mowery, Y. M.
    Badea, A.
    Qi, Y.
    Xu, E. S.
    Kirsch, D. G.
    Johnson, G. A.
    Badea, C. T.
    TOMOGRAPHY, 2020, 6 (01) : 23 - 33
  • [48] Segmentation and Analysis of Corpus Callosum in Autistic MR Brain Images Using Reaction Diffusion Level Sets
    Fredo, A. R. Jac
    Kavitha, G.
    Ramakrishnan, S.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (04) : 737 - 741
  • [49] End-to-end volumetric segmentation of white matter hyperintensities using deep learning
    Farkhani, Sadaf
    Demnitz, Naiara
    Boraxbekk, Carl-Johan
    Lundell, Henrik
    Siebner, Hartwig Roman
    Petersen, Esben Thade
    Madsen, Kristoffer Hougaard
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 245
  • [50] Cardiac MRI Semantic Segmentation for Ventricles and Myocardium Using Deep Learning
    Mukisa, Racheal
    Bansal, Arvind K.
    INTELLIGENT COMPUTING, VOL 3, 2024, 2024, 1018 : 169 - 188