Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI

被引:1
|
作者
Rodrigues, Joany [1 ]
Pinheiro, Gustavo [1 ]
Carmo, Diedre [1 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, Med Image Comp Lab, Campinas, SP, Brazil
来源
17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS | 2021年 / 12088卷
基金
巴西圣保罗研究基金会;
关键词
Segmentation; corpus callosum; deep learning; U-Net; magnetic resonance; diffusion tensor imaging; ANATOMICAL STRUCTURES; ATROPHY;
D O I
10.1117/12.2606233
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Corpus callosum (CC) segmentation is an important first step of MRI-based analysis, however most available automated methods and tools perform its segmentation on the midsagittal slice only. Additionally, the few volumetric CC segmentation methods available work on T1-weighted images, what requires an additional step of registering the T1 segmentation mask over diffusion tensor images (DTI) when conducting any DTI-based analysis. This work presents a volumetric segmentation method of the corpus callosum using a modified U-Net on diffusion tensor data, such as Fractional Anisotropy (FA), Mean Difusivity (MD) and Mode of Anisotropy (MO). The model was trained on 70 DTI acquisitions and tested on a dataset composed of 14 acquisitions with manual volumetric segmentation. Results indicate that using multiple DTI maps as input channels is better than using a single one. The best model obtained a mean dice of 83,29% on the test dataset, surpassing the performance of available softwares.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration
    Zhang, Fan
    Wells, William M., III
    O'Donnell, Lauren J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1454 - 1467
  • [32] Deep learning model-based segmentation of medical diseases from MRI and CT images
    Murmu, Anita
    Kumar, Piyush
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 608 - 613
  • [33] Brain MRI Tumour Localization and Segmentation Through Deep Learning
    Davar, Somayeh
    Fevens, Thomas
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 782 - 786
  • [34] Comparative evaluation of geometrical, Zernike moments, and volumetric features of the corpus callosum for discrimination of ASD using machine learning algorithms
    Bhattacharya, Aditi
    Manoj, Gokul
    Gupta, Vaibhavi
    Gadda, Abdul Aleem Shaik
    Vedantham, Dhanvi
    Prince, A. Amalin
    Rani, Priya
    Ramaniharan, Anandh Kilpattu
    Ronickom, Jac Fredo Agastinose
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 43 (03) : 275 - 296
  • [35] Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size
    Narayana, Ponnada A.
    Coronado, Ivan
    Sujit, Sheeba J.
    Wolinsky, Jerry S.
    Lublin, Fred D.
    Gabr, Refaat E.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (05) : 1487 - 1496
  • [36] CAD Model Segmentation Via Deep Learning
    Van Biesbroeck, Antoine
    Shang, Feifei
    Bassir, David
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (03)
  • [37] Automated Meningioma Segmentation in Multiparametric MRI Comparable Effectiveness of a Deep Learning Model and Manual Segmentation
    Laukamp, Kai Roman
    Pennig, Lenhard
    Thiele, Frank
    Reimer, Robert
    Goertz, Lukas
    Shakirin, Georgy
    Zopfs, David
    Timmer, Marco
    Perkuhn, Michael
    Borggrefe, Jan
    CLINICAL NEURORADIOLOGY, 2021, 31 (02) : 357 - 366
  • [38] Diffusion Tensor MRI Evaluation of the Corona Radiata, Cingulate Gyri, and Corpus Callosum in HIV Patients
    Leite, Sarah C. B.
    Correa, Diogo G.
    Doring, Thomas M.
    Kubo, Tadeu T. A.
    Netto, Tania M.
    Ferracini, Rafael
    Ventura, Nina
    Bahia, Paulo R. V.
    Gasparetto, Emerson L.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (06) : 1488 - 1493
  • [39] Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery
    Hagmann, Cornelia
    Singer, Jitka
    Latal, Beatrice
    Knirsch, Walter
    Makki, Malek
    JOURNAL OF CHILD NEUROLOGY, 2016, 31 (03) : 300 - 308
  • [40] Deep Learning Model for Skin Lesion Segmentation: Fully Convolutional Network
    Adegun, Adekanmi
    Viriri, Serestina
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 232 - 242