Colloidal SnO2-Assisted CdS Electron Transport Layer Enables Efficient Electron Extraction for Planar Perovskite Solar Cells

被引:35
作者
Zhou, Juntian [1 ]
Zhou, Ru [1 ]
Zhu, Jun [2 ]
Jiang, Ping [1 ]
Wan, Lei [1 ]
Niu, Haihong [1 ]
Hu, Linhua [3 ]
Yang, Xi [1 ]
Xu, Jinzhang [1 ]
Xu, Baomin [4 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Acad Optoelect Technol, Special Display & Imaging Technol Innovat Ctr Anh, Hefei 230009, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Solid State Phys, Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CdS; electron transport layers; low temperature; perovskite solar cells; SnO2; HIGHLY EFFICIENT; LOW-TEMPERATURE; HALIDE PEROVSKITES; METAL SULFIDE; PERFORMANCE; SURFACE; FILM;
D O I
10.1002/solr.202100494
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The cadmium sulfide (CdS) is a promising electron transport layer (ETL) material for perovskite solar cells (PSCs) due to its low photocatalytic activity toward perovskite materials under UV light. The critical problem responsible for the moderate performance of CdS-based PSCs is the parasitic light absorption of CdS, which drives researchers to deposit ultrathin ETLs. However, the ultrathin ETL often involves the undesirable shunt current leakage because of the direct contact between conducting substrate and perovskite layer. Herein, a fully low-temperature solution-processed colloidal SnO2-assisted CdS (S-CdS) ETL for planar CH3NH3PbI3 PSCs is constructed. The detailed characterizations of morphological, optical, and energy levels confirm that the assistance of colloidal SnO2 provides the ameliorated continuity, reduces surface roughness and superior wettability of ETLs for high-quality perovskite formation as well as the favorable cascade band structure for efficient charge transfer. The study of charge transfer mechanisms reveals that the S-CdS ETL effectively inhibits the shunt leakage, promotes the electron extraction and suppresses the charge recombination at the ETL/perovskite interface. Consequently, the S-CdS ETL-based PSCs deliver an appreciable efficiency of 16.26%, doubling that of conventional CdS-based devices. To the best of our knowledge, this value is the champion efficiency reported for CdS-based CH3NH3PbI3 PSCs.
引用
收藏
页数:13
相关论文
共 57 条
[1]  
[Anonymous], BEST RES CELL EFFICI
[2]   CdTe solar cells with open-circuit voltage breaking the 1V barrier [J].
Burst, J. M. ;
Duenow, J. N. ;
Albin, D. S. ;
Colegrove, E. ;
Reese, M. O. ;
Aguiar, J. A. ;
Jiang, C. -S. ;
Patel, M. K. ;
Al-Jassim, M. M. ;
Kuciauskas, D. ;
Swain, S. ;
Ablekim, T. ;
Lynn, K. G. ;
Metzger, W. K. .
NATURE ENERGY, 2016, 1
[3]  
Chen H., 2020, SCI CHINA MATER
[4]   Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Zhao, Xing ;
Kim, Seul-Gi ;
Park, Nam-Gyu .
ADVANCED MATERIALS, 2019, 31 (39)
[5]   High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO-ZnS Electron Transport Layer [J].
Chen, Ruihao ;
Cao, Jing ;
Duan, Yuan ;
Hui, Yong ;
Chuong, Tracy T. ;
Ou, Daohui ;
Han, Faming ;
Cheng, Fangwen ;
Huang, Xiaofeng ;
Wu, Binghui ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (01) :541-547
[6]   Grain boundary passivation with triazine-graphdiyne to improve perovskite solar cell performance [J].
Chen, Siqi ;
Pan, Qingyan ;
Li, Jiangsheng ;
Zhao, Chengjie ;
Guo, Xin ;
Zhao, Yingjie ;
Jiu, Tonggang .
SCIENCE CHINA-MATERIALS, 2020, 63 (12) :2465-2476
[7]   High-Performance Flexible Perovskite Solar Cells with a Metal Sulfide Electron Transport Layer of SnS2 by Room-Temperature Vacuum Deposition [J].
Chu, Weijing ;
Li, Xin ;
Li, Shuiping ;
Hou, Jingdi ;
Jiang, Qinghui ;
Yang, Junyou .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (01) :382-388
[8]   Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3% [J].
Cui, Peng ;
Wei, Dong ;
Ji, Jun ;
Huang, Hao ;
Jia, Endong ;
Dou, Shangyi ;
Wang, Tianyue ;
Wang, Wenjing ;
Li, Meicheng .
NATURE ENERGY, 2019, 4 (02) :150-159
[9]   Nearly monodisperse PbS quantum dots for highly efficient solar cells: an in situ seeded ion exchange approach [J].
Dou, Yan ;
Zhou, Ru ;
Wan, Lei ;
Niu, Haihong ;
Zhou, Juntian ;
Xu, Jinzhang ;
Cao, Guozhong .
CHEMICAL COMMUNICATIONS, 2018, 54 (89) :12598-12601
[10]   The origin of constant phase element in equivalent circuit of MIS (n) GaAs structures [J].
Drewniak, Lukasz ;
Kochowski, Stanislaw .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (21) :19106-19118