BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis

被引:315
作者
Li, Hui [1 ]
Ye, Keyi [1 ]
Shi, Yiting [1 ]
Cheng, Jinkui [1 ]
Zhang, Xiaoyan [1 ]
Yang, Shuhua [1 ]
机构
[1] China Agr Univ, Coll Biol Sci, State Key Lab Plant Physiol & Biochem, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
BIN2; BZR1; freezing tolerance; CBF; Arabidopsis; BRASSINOSTEROID SIGNAL-TRANSDUCTION; COLD-ACCLIMATION; TRANSCRIPTION FACTORS; GENE-EXPRESSION; GSK3-LIKE KINASES; LOW-TEMPERATURE; GROWTH; JASMONATE; IDENTIFICATION; RESISTANCE;
D O I
10.1016/j.molp.2017.01.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cold stress is a major environmental factor that adversely affects plant growth and development. The C-repeat binding factor/DRE binding factor 1 (CBF/DREB1) transcriptional regulatory cascade has been shown to play important roles in plant response to cold. Here we demonstrate that two key components of brassinosteroid (BR) signaling modulate freezing tolerance of Arabidopsis plants. The loss-of-function mutant of the GSK3-like kinases involved in BR signaling, bin2-3 bil1 bil2, showed increased freezing tolerance, whereas overexpression of BIN2 resulted in hypersensitivity to freezing stress under both non-acclimated and acclimated conditions. By contrast, gain-of-function mutants of the transcription factors BZR1 and BES1 displayed enhanced freezing tolerance, and consistently cold treatment could induce the accumulation of dephosphorylated BZR1. Biochemical and genetic analyses showed that BZR1 acts upstream of CBF1 and CBF2 to directly regulate their expression. Moreover, we found that BZR1 also regulated other COR genes uncoupled with CBFs, such as WKRY6, PYL6, SOC1, JMT, and SAG21, to modulate plant response to cold stress. Consistently, wrky6 mutants showed decreased freezing tolerance. Taken together, our results indicate that BZR1 positively modulates plant freezing tolerance through CBF-dependent and CBF-independent pathways.
引用
收藏
页码:545 / 559
页数:15
相关论文
共 48 条
[1]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[2]   An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling [J].
Aleman, Fernando ;
Yazaki, Junshi ;
Lee, Melissa ;
Takahashi, Yohei ;
Kim, Alice Y. ;
Li, Zixing ;
Kinoshita, Toshinori ;
Ecker, Joseph R. ;
Schroeder, Julian I. .
SCIENTIFIC REPORTS, 2016, 6
[3]   BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth [J].
Bernardo-Garcia, Stella ;
de Lucas, Miguel ;
Martinez, Cristina ;
Espinosa-Ruiz, Ana ;
Daviere, Jean-Michel ;
Prat, Salome .
GENES & DEVELOPMENT, 2014, 28 (15) :1681-1694
[4]   GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis [J].
Cai, Zhenying ;
Liu, Jingjing ;
Wang, Haijiao ;
Yang, Cangjing ;
Chen, Yuxiao ;
Li, Yongchi ;
Pan, Shanjin ;
Dong, Rui ;
Tang, Guiliang ;
Barajas-Lopez, Juan de Dios ;
Fujii, Hiroaki ;
Wang, Xuelu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) :9651-9656
[5]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[6]   Cold stress regulation of gene expression in plants [J].
Chinnusamy, Viswanathan ;
Zhu, Jianhua ;
Zhu, Jian-Kang .
TRENDS IN PLANT SCIENCE, 2007, 12 (10) :444-451
[7]   Benefits of brassinosteroid crosstalk [J].
Choudhary, Sikander Pal ;
Yu, Jing-Quan ;
Yamaguchi-Shinozaki, Kazuko ;
Shinozaki, Kazuo ;
Lam-Son Phan Tran .
TRENDS IN PLANT SCIENCE, 2012, 17 (10) :594-605
[8]   Consequences of the overproduction of methyl jasmonate on seed production, tolerance to defoliation and competitive effect and response of Arabidopsis thaliana [J].
Cipollini, Don .
NEW PHYTOLOGIST, 2007, 173 (01) :146-153
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis [J].
Ding, Yanglin ;
Li, Hui ;
Zhang, Xiaoyan ;
Xie, Qi ;
Gong, Zhizhong ;
Yang, Shuhua .
DEVELOPMENTAL CELL, 2015, 32 (03) :278-289