Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages

被引:3
作者
Yu, Xiang [1 ]
Ngoc Thang Vu [1 ]
机构
[1] Univ Stuttgart, Inst Maschinelle Sprachverarbeitung, Stuttgart, Germany
来源
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2 | 2017年
关键词
D O I
10.18653/v1/P17-2106
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a transition-based dependency parser that uses a convolutional neural network to compose word representations from characters. The character composition model shows great improvement over the word-lookup model, especially for parsing agglutinative languages. These improvements are even better than using pre-trained word embeddings from extra data. On the SPMRL data sets, our system outperforms the previous best greedy parser (Ballesteros et al., 2015) by a margin of 3% on average.(1)
引用
收藏
页码:672 / 678
页数:7
相关论文
共 18 条
  • [1] Andor D, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P2442
  • [2] [Anonymous], 2015, EMNLP
  • [3] [Anonymous], 2014, P 18 C EMP METH NAT, DOI DOI 10.3115/V1/D14-1082
  • [4] [Anonymous], 2014, P 1 JOINT WORKSHOP S
  • [5] [Anonymous], 2013, P 4 WORKSH STAT PARS
  • [6] Attardi Giuseppe., 2006, P 10 C COMPUTATIONAL, P166
  • [7] Bjorkelund Anders., 2014, Notes of the SPMRL
  • [8] Costa-jussà MR, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P357
  • [9] dos Santos Ccero., 2015, Proceedings of NEWS 2015 The Fifth Named Entities Workshop, P25, DOI DOI 10.18653/V1/W15-3904
  • [10] dos Santos CN, 2014, PR MACH LEARN RES, V32, P1818